diff --git a/climax/main/downscale_infer.py b/climax/main/downscale_infer.py index 0a83e0fc20b1508b1b150daf28ecc26b929a3769..2918217a762e200471737489b773bf45dbe36972 100644 --- a/climax/main/downscale_infer.py +++ b/climax/main/downscale_infer.py @@ -75,7 +75,7 @@ if __name__ == '__main__': dem = dem.drop_vars(['slope', 'aspect']) # add dem to set of predictor variables - Era5_ds = xr.merge([Era5_ds, dem]) + Era5_ds = xr.merge([Era5_ds, dem]).chunk(Era5_ds.chunks) # load pretrained model if state_file.exists(): diff --git a/climax/main/downscale_train.py b/climax/main/downscale_train.py index 7468fa839c5e16f41f94e4e5addb90d552e53457..1535759bd3d24c586ef3228e1eda4d394a7cca81 100644 --- a/climax/main/downscale_train.py +++ b/climax/main/downscale_train.py @@ -101,7 +101,7 @@ if __name__ == '__main__': # check whether to use slope and aspect if not DEM_FEATURES: - dem = dem.drop_vars(['slope', 'aspect']) + dem = dem.drop_vars(['slope', 'aspect']).chunk(Era5_ds.chunks) # add dem to set of predictor variables Era5_ds = xr.merge([Era5_ds, dem])