diff --git a/climax/main/download_ERA5.py b/climax/main/download_ERA5.py
index 82a2bfd28a0800be9adeb5e9deeb88a5a1535074..2dfd77bb111f54a8eeb086810d10e6bc7655afb6 100644
--- a/climax/main/download_ERA5.py
+++ b/climax/main/download_ERA5.py
@@ -5,18 +5,15 @@
 
 # builtins
 import os
-import pathlib
-import logging
-from logging.config import dictConfig
 from joblib import Parallel, delayed
 
 # externals
 import cdsapi
 import numpy as np
-import xarray as xr
 
 # locals
-from pysegcnn.core.logging import log_conf
+from climax.core.constants import ERA5_VARIABLES
+from climax.main.config import ERA5_PATH
 
 # ERA-5 product
 product = 'reanalysis-era5-pressure-levels'
@@ -25,14 +22,10 @@ product_type = 'reanalysis'
 # pressure levels
 pressure_levels = ['850', '500']
 
-# variables
-variables = ['geopotential', 'temperature', 'u_component_of_wind',
-             'v_component_of_wind', 'specific_humidity']
-
 # time period
 years = [str(y) for y in np.arange(1981, 2011)]
 month = [str(m) for m in np.arange(1, 13)]
-days = [str(d) for d in np.arange(1, 31)]
+days = [str(d) for d in np.arange(1, 32)]
 time = ["{:02d}:00".format(t) for t in np.arange(0,24)]
 
 # area of interest (Alps): North, West, South, East
@@ -49,25 +42,16 @@ CONFIG = {
     'area': area
 }
 
-# output path
-target = pathlib.Path('/mnt/CEPH_PROJECTS/FACT_CLIMAX/REANALYSIS/ERA5/')
-
-# module level Logger
-LOGGER = logging.getLogger(__name__)
-
 
 if __name__ == '__main__':
 
-    # initialize logging
-    dictConfig(log_conf())
-
     # initialize client
     c = cdsapi.Client()
 
     # download data for the different variables
-    for var in variables:
+    for var in ERA5_VARIABLES:
         # create output directory
-        output = target.joinpath(var)
+        output = ERA5_PATH.joinpath('Downloads', var)
         if not output.exists():
             output.mkdir(parents=True, exist_ok=True)
 
@@ -81,25 +65,3 @@ if __name__ == '__main__':
             delayed(c.retrieve)(
                 product, {**CONFIG, **{'variable': var, 'year': year}}, file)
             for file, year in zip(files, years) if not file.exists())
-
-        # TODO: Move to preprocess_ERA5.py
-
-        # aggregate files for different years into a single file using xarray
-        # and dask
-        ds = xr.open_mfdataset(files, parallel=True).compute()
-        filename = output.joinpath('_'.join('ERA5', var, years[0], years[-1]))
-
-        # set NetCDF file compression for each variable
-        for _, var in ds.data_vars.items():
-            var.encoding['zlib'] = True
-            var.encoding['complevel'] = 5
-
-        # save aggregated netcdf file
-        LOGGER.info('Compressing NetCDF: {}'.format(filename))
-        ds.to_netcdf(filename, engine='h5netcdf')
-
-        # remove single netcdf files from disk
-        # LOGGER.info('Removing individual NetCDF files ...')
-        # for file in files:
-        #     file.unlink()
-        #     LOGGER.info('rm {}'.format(file))