diff --git a/climax/main/downscale_infer.py b/climax/main/downscale_infer.py index dac64d1a2b7bebe4e08c88c4717ef28aeaba6aff..1093b0cab3c2a351e44b4cd7ac8dc524a09616e2 100644 --- a/climax/main/downscale_infer.py +++ b/climax/main/downscale_infer.py @@ -91,8 +91,9 @@ if __name__ == '__main__': LogConfig.init_log('Predicting period: {}'.format( ' - '.join([str(dates[0]), str(dates[-1])]))) ref_ds = Era5_ds.sel(time=dates) - trg_ds.append(predict_ERA5(net, ref_ds, PREDICTAND, normalize=NORM, - batch_size=BATCH_SIZE, doy=DOY)) + trg_ds.append(predict_ERA5(net, ref_ds, PREDICTAND, LOSS, + normalize=NORM, batch_size=BATCH_SIZE, + doy=DOY)) # merge predictions for entire validation period LOGGER.info('Merging reference periods ...') diff --git a/climax/main/downscale_infer_season.py b/climax/main/downscale_infer_season.py index 6173420f8816b7cab0947ec28cc24fa4d41e3c7e..76c844116d7e1c0087ddde2bfb649f562e4f6ad1 100644 --- a/climax/main/downscale_infer_season.py +++ b/climax/main/downscale_infer_season.py @@ -99,8 +99,9 @@ if __name__ == '__main__': predictors = Era5_ds.isel(time=v) # predict current season - predictand = predict_ERA5(net, predictors, PREDICTAND, normalize=NORM, - batch_size=BATCH_SIZE, doy=DOY) + predictand = predict_ERA5(net, predictors, PREDICTAND,LOSS, + normalize=NORM, batch_size=BATCH_SIZE, + doy=DOY) # append prediction to target dataset trg_ds.append(predictand)