diff --git a/Scripts/downscale.sh b/Scripts/downscale.sh
index 54c44a88ee36a55b65f87f87846b38b25d3a1e59..dde1a3b6c71d9356a7f2b2de5ef9779d02d94a59 100644
--- a/Scripts/downscale.sh
+++ b/Scripts/downscale.sh
@@ -5,7 +5,7 @@ conda activate climax
 cd ~/git/climax
 
 # wet day thresholds to test
-WET_DAY_THRESHOLDS=(0, 0.5, 1, 2, 3, 5)
+WET_DAY_THRESHOLDS=(0 0.5 1 2 3 5)
 
 for w in ${WET_DAY_THRESHOLDS[@]}; do
     # change wet day threshold in configuration
diff --git a/climax/core/loss.py b/climax/core/loss.py
index 8895ab177a64c54ac1e4cd72f48f071f1def4deb..dffbb6f256817b149bdc147a4233fcd4653335df 100644
--- a/climax/core/loss.py
+++ b/climax/core/loss.py
@@ -48,7 +48,7 @@ class L1Loss(NaNLoss):
         return F.l1_loss(y_pred[mask], y_true[mask], reduction=self.reduction)
 
 
-class BernoulliLoss(NaNLoss):
+class BernoulliGammaLoss(NaNLoss):
 
     def __init__(self, size_average=None, reduce=None, reduction='mean',
                  min_amount=0):
@@ -57,13 +57,6 @@ class BernoulliLoss(NaNLoss):
         # minimum amount of precipitation to be classified as precipitation
         self.min_amount = min_amount
 
-
-class BernoulliGammaLoss(BernoulliLoss):
-
-    def __init__(self, size_average=None, reduce=None, reduction='mean',
-                 min_amount=0):
-        super().__init__(size_average, reduce, reduction)
-
     def forward(self, y_pred, y_true):
 
         # convert to float32
@@ -111,12 +104,15 @@ class BernoulliGammaLoss(BernoulliLoss):
         return p * np.exp(shape) * np.exp(scale)
 
 
-class BernoulliGenParetoLoss(BernoulliLoss):
+class BernoulliGenParetoLoss(NaNLoss):
 
     def __init__(self, size_average=None, reduce=None, reduction='mean',
                  min_amount=0):
         super().__init__(size_average, reduce, reduction)
 
+        # minimum amount of precipitation to be classified as precipitation
+        self.min_amount = min_amount
+
     def forward(self, y_pred, y_true):
 
         # convert to float32
@@ -157,12 +153,15 @@ class BernoulliGenParetoLoss(BernoulliLoss):
         return self.reduce(loss)
 
 
-class BernoulliWeibullLoss(BernoulliLoss):
+class BernoulliWeibullLoss(NaNLoss):
 
     def __init__(self, size_average=None, reduce=None, reduction='mean',
                  min_amount=0):
         super().__init__(size_average, reduce, reduction)
 
+        # minimum amount of precipitation to be classified as precipitation
+        self.min_amount = min_amount
+
     def forward(self, y_pred, y_true):
 
         # convert to float32