From fcc5bc7f04addb41f8524e28c6013b2060f0a36f Mon Sep 17 00:00:00 2001 From: "Daniel.Frisinghelli" <daniel.frisinghelli@eurac.edu> Date: Tue, 19 Oct 2021 16:34:11 +0200 Subject: [PATCH] Default configuration. --- climax/main/config.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/climax/main/config.py b/climax/main/config.py index 2ab3734..a86c8d9 100644 --- a/climax/main/config.py +++ b/climax/main/config.py @@ -50,7 +50,7 @@ CHUNKS = {'time': 365} # ----------------------------------------------------------------------------- # include day of year as predictor -DOY = False +DOY = True # use digital elevation model instead of model orography DEM = True @@ -85,7 +85,7 @@ STRATIFY = False # size of the validation set w.r.t. the training set # e.g., VALID_SIZE = 0.1 means: 90% of CALIB_PERIOD for training # 10% of CALIB_PERIOD for validation -VALID_SIZE = 0.1 +VALID_SIZE = 0.2 # number of folds for training with KFold cross-validation CV = 5 @@ -117,18 +117,18 @@ FILTERS = [32, 64, 128, 256] # BernoulliGammaLoss (NLL of Bernoulli-Gamma distribution) # BernoulliWeibullLoss (NLL of Bernoulli-Weibull distribution) # LOSS = L1Loss() -LOSS = MSELoss() -# LOSS = BernoulliGammaLoss(min_amount=1) +# LOSS = MSELoss() +LOSS = BernoulliGammaLoss(min_amount=1) # LOSS = BernoulliWeibullLoss(min_amount=1) # stochastic optimization algorithm OPTIM = torch.optim.SGD # OPTIM = torch.optim.Adam -OPTIM_PARAMS = {'lr': 1e-1, # learning rate - 'weight_decay': 1e-6 # regularization rate +OPTIM_PARAMS = {'lr': 1e-3, # learning rate + 'weight_decay': 0 # regularization rate } if OPTIM == torch.optim.SGD: - OPTIM_PARAMS['momentum'] = 0.9 + OPTIM_PARAMS['momentum'] = 0.99 # learning rate scheduler # LR_SCHEDULER = torch.optim.lr_scheduler.MultiStepLR @@ -148,14 +148,14 @@ BATCH_SIZE = 16 # network training configuration TRAIN_CONFIG = { 'checkpoint_state': {}, - 'epochs': 250, + 'epochs': 50, 'save': True, 'save_loaders': False, 'early_stop': True, - 'patience': 25, + 'patience': 10, 'multi_gpu': True, 'classification': False, - 'clip_gradients': True + 'clip_gradients': False } # whether to overwrite existing models -- GitLab