diff --git a/pysegcnn/core/graphics.py b/pysegcnn/core/graphics.py index 82badfc54bbdb776a2be85ff4d56ae6e7664f6d1..2eeaa30c41717053b5712133bfcc4b20dad7c28c 100644 --- a/pysegcnn/core/graphics.py +++ b/pysegcnn/core/graphics.py @@ -481,7 +481,7 @@ def plot_loss(state_file, figsize=(10, 10), step=5, # load the model state state_file = pathlib.Path(state_file) model_state = torch.load(state_file) - LOGGER.info('Plot model statistics: {}'.format(state_file.stem)) + LOGGER.info('Plot model statistics: {}'.format(state_file.name)) # get all non-zero elements, i.e. get number of epochs trained before # early stop diff --git a/pysegcnn/core/models.py b/pysegcnn/core/models.py index d37daca54a6ee9eb52f3c5b252d7fc67d0970eea..30703939b7161fea580896a76466b01844ce9ee3 100644 --- a/pysegcnn/core/models.py +++ b/pysegcnn/core/models.py @@ -197,7 +197,6 @@ class Network(nn.Module): state_file = pathlib.Path(check_filename_length(state_file)) if not state_file.exists(): raise FileNotFoundError('{} does not exist.'.format(state_file)) - LOGGER.info('Loading pretrained weights from: {}'.format(state_file)) # load the model state model_state = torch.load(state_file) @@ -285,6 +284,8 @@ class Network(nn.Module): SupportedOptimizers) # load the pretrained model configuration + LOGGER.info('Loading pretrained weights from: {}' + .format(state_file.name)) model_state = Network.load(state_file) # instanciate the pretrained model architecture