diff --git a/pysegcnn/core/dataset.py b/pysegcnn/core/dataset.py index c04103cea745c9257d82da2b40a804ade4c31465..b3678f41775d4762551f3432b779cea265f05f72 100644 --- a/pysegcnn/core/dataset.py +++ b/pysegcnn/core/dataset.py @@ -633,17 +633,9 @@ class ImageDataset(Dataset): def class_distribution(self): # initialize dictionary of class spectral distribution - cls_ds = {k: np.empty(shape=(0, len(self.use_bands))) for k, _ in - self.labels.items()} - - # initialize class distribution dataframe - # columns = [band.capitalize() for band in self.use_bands] + ['Class'] - # cls_df = pd.DataFrame(columns=columns) - - # create the lookup table to replace the class identifiers by their - # corresponding labels - # lookup = np.array(list({k: v['label'] for k, v in self.labels.items()} - # .items())).astype(object) + # exclude NoData class + cls_ds = {k: np.empty(shape=(0, len(self.use_bands))) for k, v in + self.labels.items() if v['label'] != 'No_data'} # iterate over the samples of the dataset for i in range(len(self)): @@ -661,18 +653,6 @@ class ImageDataset(Dataset): return cls_ds - # reshape the current sample - # data = np.hstack([x.flatten(start_dim=1).T, np.expand_dims( - # array_replace(y.flatten(), lookup), axis=1)]) - - # # the pixels of the current sample to the dataframe - # df = pd.DataFrame(data, columns=columns) - - # # update class distribution dataframe - # cls_df = cls_df.append(df) - - # return cls_df - def __repr__(self): """Dataset representation.