diff --git a/pysegcnn/core/graphics.py b/pysegcnn/core/graphics.py index d8b4066fcc5778e2b3d6bc7e0a746e0fef94ce57..e329985ae36a6e848fbff9a9b93f658da42c686c 100644 --- a/pysegcnn/core/graphics.py +++ b/pysegcnn/core/graphics.py @@ -345,7 +345,7 @@ def plot_sample(x, use_bands, labels, def plot_confusion_matrix(cm, labels, normalize=True, figsize=(10, 10), - cmap='YlGnBu', state_file=None, subset=None, + cmap='Blues', state_file=None, subset=None, outpath=os.path.join(HERE, '_graphics/')): """Plot the confusion matrix ``cm``. @@ -360,7 +360,7 @@ def plot_confusion_matrix(cm, labels, normalize=True, figsize=(10, 10), figsize : `tuple` [`int`], optional The figure size in centimeters. The default is `(10, 10)`. cmap : `str`, optional - A matplotlib colormap. The default is `'YlGnBu'`. + A matplotlib colormap. The default is `'Blues'`. state_file : `str` or `None` or :py:class:`pathlib.Path`, optional Filename to save the plot to. ``state`` should be an existing model state file ending with `'.pt'`. The default is `None`, i.e. the plot is @@ -684,7 +684,7 @@ def plot_class_distribution(ds, figsize=(16, 9), alpha=0.5): def plot_classification_report(report, labels, figsize=(10, 10), - cmap='YlGnBu', **kwargs): + cmap='Blues', **kwargs): """Plot the :py:func:`sklearn.metrics.classification_report` as heatmap. Parameters @@ -699,7 +699,7 @@ def plot_classification_report(report, labels, figsize=(10, 10), figsize : `tuple` [`int`], optional The figure size in centimeters. The default is `(10, 10)`. cmap : `str`, optional - A matplotlib colormap. The default is `'YlGnBu'`. + A matplotlib colormap. The default is `'Blues'`. **kwargs : Additional keyword arguments passed to :py:func:`seaborn.heatmap`.