diff --git a/pysegcnn/main/config.py b/pysegcnn/main/config.py index 5325097f7d8a06d47ef5b1cbe69e855e0af2120b..f2156a56967d00ab9a084647ec5d9587705f5f72 100644 --- a/pysegcnn/main/config.py +++ b/pysegcnn/main/config.py @@ -66,9 +66,6 @@ dataset_config = { # used if split_mode='random' and split_mode='scene' 'seed': 0, - # the constant value to pad around the ground truth mask if pad=True - 'cval': 99, - # whether to sort the dataset in chronological order, useful for time # series data 'sort': False, @@ -206,15 +203,15 @@ model_config = { # was trained on # whether to use a pretrained model for transfer learning - 'pretrained': False, + 'transfer': True, # name of the pretrained model to apply to a different dataset - 'pretrained_model': 'UNet_SparcsDataset_t125_b128_rgbn.pt', + 'pretrained_model': 'UNet_SparcsDataset_t125_b64_rgbn.pt', # Training ---------------------------------------------------------------- # whether to resume training from an existing model checkpoint - 'checkpoint': False, + 'checkpoint': True, # define the batch size # determines how many samples of the dataset are processed until the @@ -222,13 +219,7 @@ model_config = { 'batch_size': 64, # the seed for the random number generator intializing the network weights - 'torch_seed': 0 - -} - - -# the training configuration dictionary -train_config = { + 'torch_seed': 0, # ----------------------------- Training --------------------------------- @@ -307,5 +298,4 @@ eval_config = { config = {**dataset_config, **split_config, **model_config, - **train_config, **eval_config}