diff --git a/pysegcnn/core/trainer.py b/pysegcnn/core/trainer.py index 77b88b48234b590fe5c7692bb269fbc5ba0b181a..c620073638c2b2fb7d0d1fa917724522140f303b 100644 --- a/pysegcnn/core/trainer.py +++ b/pysegcnn/core/trainer.py @@ -955,9 +955,9 @@ class LogConfig(BaseConfig): The string to write to the model log file. """ - LOGGER.info(80 * '-') + LOGGER.info(200 * '-') LOGGER.info('{}: '.format(LogConfig.now()) + init_str) - LOGGER.info(80 * '-') + LOGGER.info(200 * '-') @dataclasses.dataclass @@ -2459,6 +2459,11 @@ class NetworkInference(BaseConfig): def predict(self, model): """Classify the samples of the target dataset. + Parameters + ---------- + model : :py:class:`pysegcnn.core.models.Network` + The model to evaluate on the target dataset. + Returns ------- output : `dict` [`str`, `dict`] @@ -2581,7 +2586,7 @@ class NetworkInference(BaseConfig): # initialize logging log = LogConfig(state) dictConfig(log_conf(log.log_file)) - log.init_log('Evaluating model: {}.'.format(state.name)) + log.init_log('Evaluating model: {}.'.format(state)) # check whether model was already evaluated if self.eval_file(state).exists(): @@ -2607,7 +2612,7 @@ class NetworkInference(BaseConfig): model, _ = Network.load_pretrained_model(state) # evaluate the model on the target dataset - output = self.predict() + output = self.predict(model) # check whether to calculate confusion matrix if self.cm: