diff --git a/pysegcnn/main/train_config.py b/pysegcnn/main/train_config.py index 80506310861599b786f74fd910d30a707b4b6a01..d83a6f2a912c77e5d20a68f647b65c6ef1f02772 100644 --- a/pysegcnn/main/train_config.py +++ b/pysegcnn/main/train_config.py @@ -29,25 +29,26 @@ import pathlib HERE = pathlib.Path(__file__).resolve().parent # path to the datasets on the current machine -DRIVE_PATH = pathlib.Path('C:/Eurac/Projects/CCISNOW/Datasets/') +# DRIVE_PATH = pathlib.Path('C:/Eurac/Projects/CCISNOW/Datasets/') # DRIVE_PATH = pathlib.Path('/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/Datasets/') # nopep8 +DRIVE_PATH = pathlib.Path('/home/dfrisinghelli/Datasets/') # name and paths to the datasets DATASETS = {'Sparcs': DRIVE_PATH.joinpath('Sparcs'), - 'Alcd': DRIVE_PATH.joinpath('Alcd/60m') + 'Alcd': DRIVE_PATH.joinpath('Alcd') } # name of the dataset DS_NAME = 'Sparcs' # spectral bands to use for training -BANDS = ['red', 'green', 'blue', 'nir', 'swir1', 'swir2'] +BANDS = ['red', 'green', 'blue'] # tile size of a single sample -TILE_SIZE = None +TILE_SIZE = 128 # number of folds for cross validation -K_FOLDS = 1 +K_FOLDS = 10 # the source dataset configuration dictionary ds_config = { @@ -249,10 +250,10 @@ model_config = { 'early_stop': True, 'mode': 'max', 'delta': 0, - 'patience': 10, + 'patience': 20, # define the number of epochs: the number of maximum iterations over # the whole training dataset - 'epochs': 100, + 'epochs': 5000, }