diff --git a/pysegcnn/main/train_config.py b/pysegcnn/main/train_config.py index d83a6f2a912c77e5d20a68f647b65c6ef1f02772..fc54e2394fb655a304174efea2a57fce7bc47e36 100644 --- a/pysegcnn/main/train_config.py +++ b/pysegcnn/main/train_config.py @@ -31,7 +31,8 @@ HERE = pathlib.Path(__file__).resolve().parent # path to the datasets on the current machine # DRIVE_PATH = pathlib.Path('C:/Eurac/Projects/CCISNOW/Datasets/') # DRIVE_PATH = pathlib.Path('/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/Datasets/') # nopep8 -DRIVE_PATH = pathlib.Path('/home/dfrisinghelli/Datasets/') +# DRIVE_PATH = pathlib.Path('/home/dfrisinghelli/Datasets/') +DRIVE_PATH = pathlib.Path('/home/clusterusers/dfrisinghelli_eurac/Datasets/') # name and paths to the datasets DATASETS = {'Sparcs': DRIVE_PATH.joinpath('Sparcs'), @@ -235,7 +236,7 @@ model_config = { # define the batch size # determines how many samples of the dataset are processed until the # weights of the network are updated (via mini-batch gradient descent) - 'batch_size': 128, + 'batch_size': 256, # the seed for the random number generator intializing the network weights 'torch_seed': 0, @@ -254,6 +255,6 @@ model_config = { # define the number of epochs: the number of maximum iterations over # the whole training dataset - 'epochs': 5000, + 'epochs': 200, }