diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle index 8177ee83cc892e37ca93cbc2fa2760d075755b87..6ca556ea15f425b5da360dd04ef947db6eb54b71 100644 Binary files a/docs/_build/doctrees/environment.pickle and b/docs/_build/doctrees/environment.pickle differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.Cloud95Dataset.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.Cloud95Dataset.doctree index 5ef86132fb7c28b8990bc6e08b74291855adb746..9be8cb0cb3187ece02d6feb0b3c97a8382d6a126 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.Cloud95Dataset.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.Cloud95Dataset.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.ImageDataset.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.ImageDataset.doctree index 419113a28a9c3ab7364d1f88fa99c703ebdd275f..4523ff58f78c9bc2811fa28dcd91dc346a9867ef 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.ImageDataset.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.ImageDataset.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.SparcsDataset.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.SparcsDataset.doctree index 20aad787c0af6cccc82308a42b2f2995910e626d..dbd672a252f6f9f7ee7ac72946c7604e3a5fd7ee 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.SparcsDataset.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.dataset.SparcsDataset.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Block.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Block.doctree index 23c8160fee9d36e17b17ef1ba2e82de2fad14887..990fde451cd8bc6fa97b3cef81568112f3ff6a80 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Block.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Block.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Conv2dSame.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Conv2dSame.doctree index 69c0fd72092fcdc2070369b78e183ae42e5e3190..23a621e36f96ca696179a620a26077d33c5074b4 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Conv2dSame.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Conv2dSame.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.doctree index 8137ca9dd91d89ad824f5f5fd3171fa0b892eb5e..f9938aa12ae0a5ac82e2ab22b9cb5107ec686714 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.doctree index bc7a303b51b774ecc224b78ededae4354a6ba137..49c15ca4a22a51e766c5501fcb3a1835efbc8756 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.doctree index 7ae0b90e42a8438aeb0b968bbf44dac505134158..80c8a05b1fc38b3e9b5ec76677a2b503cc5605d1 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Decoder.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Decoder.doctree index c5db12d335ea6ef9b6e03c97981ebcc795e9b949..53aea4eef4e038db132586195ca2cc43403087d6 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Decoder.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Decoder.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.DecoderBlock.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.DecoderBlock.doctree index 951a1fdb5678105b9674507c191f4ea840e50f34..80b772654589069540fbd07d38e2139a3d8f0e8c 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.DecoderBlock.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.DecoderBlock.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Encoder.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Encoder.doctree index 3c96ed7f91ef33f310ac27623fbe2e44ce193639..7e7ceeb3438dccc48089c1dc1d87fc01d7944999 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Encoder.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.Encoder.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.EncoderBlock.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.EncoderBlock.doctree index c995fe994747a627df70b5eae6aaef20da4f50fa..aaf11f5fd6e14754c642b85737e28e3a7cb5bb54 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.layers.EncoderBlock.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.layers.EncoderBlock.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.models.Network.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.models.Network.doctree index 3b66c63724c97ade22e24070a3b643f8c9103532..6f3a902c45ea0eafbba98b8d4f9d051962bfc444 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.models.Network.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.models.Network.doctree differ diff --git a/docs/_build/doctrees/source/generated/pysegcnn.core.models.UNet.doctree b/docs/_build/doctrees/source/generated/pysegcnn.core.models.UNet.doctree index b89ad75eb33b76b2c53d7e87facdcb23b1b23395..87794a72c992936cbc8fc12bbb6f10141c1ce82d 100644 Binary files a/docs/_build/doctrees/source/generated/pysegcnn.core.models.UNet.doctree and b/docs/_build/doctrees/source/generated/pysegcnn.core.models.UNet.doctree differ diff --git a/docs/_build/html/_modules/pysegcnn/core/dataset.html b/docs/_build/html/_modules/pysegcnn/core/dataset.html index d9f8fd6b93a2811c9253779d30b16990a730c43c..a072b0b838945ff8b822568aaa7666000cc927d6 100644 --- a/docs/_build/html/_modules/pysegcnn/core/dataset.html +++ b/docs/_build/html/_modules/pysegcnn/core/dataset.html @@ -201,10 +201,64 @@ <span class="sd"> PyTorch standard. This enables the use of the handy</span> <span class="sd"> :py:class:`torch.utils.data.DataLoader` class during model training.</span> +<span class="sd"> Attributes</span> +<span class="sd"> ----------</span> +<span class="sd"> root_dir : `str`</span> +<span class="sd"> The root directory, path to the dataset.</span> +<span class="sd"> use_bands : `list` [`str`]</span> +<span class="sd"> List of the spectral bands to use during model training.</span> +<span class="sd"> tile_size : `int` or `None`</span> +<span class="sd"> The size of the tiles.</span> +<span class="sd"> pad : `bool`</span> +<span class="sd"> Whether to center pad the input image.</span> +<span class="sd"> gt_pattern : `str`</span> +<span class="sd"> A regural expression to match the ground truth naming convention.</span> +<span class="sd"> sort : `bool`</span> +<span class="sd"> Whether to chronologically sort the samples.</span> +<span class="sd"> seed : `int`</span> +<span class="sd"> The random seed.</span> +<span class="sd"> transforms : `list`</span> +<span class="sd"> List of :py:class:`pysegcnn.core.transforms.Augment` instances.</span> +<span class="sd"> size : `tuple` [`int`]</span> +<span class="sd"> The size of an image of the dataset.</span> +<span class="sd"> sensor : :py:class:`enum.Enum`</span> +<span class="sd"> An enumeration of the bands of sensor the dataset is derived from,</span> +<span class="sd"> see e.g. :py:class:`pysegcnn.core.constants.Landsat8`.</span> +<span class="sd"> bands : `dict` [`int`, `str`]</span> +<span class="sd"> The spectral bands of ``sensor``. The keys are the number and the</span> +<span class="sd"> values are the name of the spectral bands.</span> +<span class="sd"> labels : `dict` [`int`, `dict`]</span> +<span class="sd"> The label dictionary. The keys are the values of the class labels</span> +<span class="sd"> in the ground truth. Each nested `dict` has keys:</span> +<span class="sd"> ``'color'``</span> +<span class="sd"> A named color (`str`).</span> +<span class="sd"> ``'label'``</span> +<span class="sd"> The name of the class label (`str`).</span> +<span class="sd"> tiles : `int`</span> +<span class="sd"> Number of tiles with size ``(tile_size, tile_size)`` within an image.</span> +<span class="sd"> padding : `tuple` [`int`]</span> +<span class="sd"> The amount of padding, (bottom, left, top, right).</span> +<span class="sd"> height : `int`</span> +<span class="sd"> The height of a padded image.</span> +<span class="sd"> width : `int`</span> +<span class="sd"> The width of a padded image.</span> +<span class="sd"> topleft : `dict` [`int`, `tuple`]</span> +<span class="sd"> The topleft corners of the tiles. The keys of are the tile ids (`int`)</span> +<span class="sd"> and the values are the topleft corners (y, x) of the tiles.</span> +<span class="sd"> cval : `int`</span> +<span class="sd"> When padding, ``cval`` is the value of the "no data" label in the</span> +<span class="sd"> ground truth. Otherwise, ``cval=0``.</span> +<span class="sd"> gt : `list` [`str` or :py:class:`pathlib.Path`]</span> +<span class="sd"> List of the ground truth images.</span> +<span class="sd"> keys : `list`</span> +<span class="sd"> List of required keys for each dictionary in ``scenes``.</span> +<span class="sd"> scenes : `list` [`dict`]</span> +<span class="sd"> List of dictionaries representing the samples of the dataset.</span> + <span class="sd"> """</span> <div class="viewcode-block" id="ImageDataset.__init__"><a class="viewcode-back" href="../../../source/generated/pysegcnn.core.dataset.ImageDataset.html#pysegcnn.core.dataset.ImageDataset.__init__">[docs]</a> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">root_dir</span><span class="p">,</span> <span class="n">use_bands</span><span class="o">=</span><span class="p">[],</span> <span class="n">tile_size</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">pad</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> - <span class="n">gt_pattern</span><span class="o">=</span><span class="s1">'(.*)gt.tif'</span><span class="p">,</span> <span class="n">sort</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">transforms</span><span class="o">=</span><span class="p">[]):</span> + <span class="n">gt_pattern</span><span class="o">=</span><span class="s1">'(.*)gt</span><span class="se">\\</span><span class="s1">.tif'</span><span class="p">,</span> <span class="n">sort</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">seed</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">transforms</span><span class="o">=</span><span class="p">[]):</span> <span class="sa">r</span><span class="sd">"""Initialize.</span> <span class="sd"> Parameters</span> @@ -309,6 +363,9 @@ <span class="n">LOGGER</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="s1">'Adding label "No data" with value=</span><span class="si">{}</span><span class="s1"> to ground truth.'</span> <span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cval</span><span class="p">))</span> + <span class="c1"># list of ground truth images</span> + <span class="bp">self</span><span class="o">.</span><span class="n">gt</span> <span class="o">=</span> <span class="p">[]</span> + <span class="k">def</span> <span class="nf">_build_labels</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span> <span class="sd">"""Build the label dictionary.</span> @@ -316,7 +373,7 @@ <span class="sd"> -------</span> <span class="sd"> labels : `dict` [`int`, `dict`]</span> <span class="sd"> The label dictionary. The keys are the values of the class labels</span> -<span class="sd"> in the ground truth ``y``. Each nested `dict` should have keys:</span> +<span class="sd"> in the ground truth. Each nested `dict` should have keys:</span> <span class="sd"> ``'color'``</span> <span class="sd"> A named color (`str`).</span> <span class="sd"> ``'label'``</span> @@ -819,7 +876,6 @@ <span class="sd">"""Build the list of samples of the dataset."""</span> <span class="c1"># search the root directory</span> <span class="n">scenes</span> <span class="o">=</span> <span class="p">[]</span> - <span class="bp">self</span><span class="o">.</span><span class="n">gt</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">dirpath</span><span class="p">,</span> <span class="n">dirname</span><span class="p">,</span> <span class="n">files</span> <span class="ow">in</span> <span class="n">os</span><span class="o">.</span><span class="n">walk</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">root</span><span class="p">):</span> <span class="c1"># search for a ground truth in the current directory</span> diff --git a/docs/_build/html/searchindex.js b/docs/_build/html/searchindex.js index 121f50fd6d65dbf40b337319ced81e981d6a4381..1b056d1a4d7e8c83f7018b6504bc620dc1d0bbaa 100644 --- a/docs/_build/html/searchindex.js +++ b/docs/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index","source/api","source/generated/pysegcnn.core.dataset.Cloud95Dataset","source/generated/pysegcnn.core.dataset.ImageDataset","source/generated/pysegcnn.core.dataset.SparcsDataset","source/generated/pysegcnn.core.dataset.StandardEoDataset","source/generated/pysegcnn.core.layers.Block","source/generated/pysegcnn.core.layers.Conv2dSame","source/generated/pysegcnn.core.layers.ConvBnReluMaxPool","source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool","source/generated/pysegcnn.core.layers.ConvBnReluUpsample","source/generated/pysegcnn.core.layers.Decoder","source/generated/pysegcnn.core.layers.DecoderBlock","source/generated/pysegcnn.core.layers.Encoder","source/generated/pysegcnn.core.layers.EncoderBlock","source/generated/pysegcnn.core.models.Network","source/generated/pysegcnn.core.models.UNet","source/generated/pysegcnn.core.transforms.Augment","source/installation","source/requirements"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst","source\\api.rst","source\\generated\\pysegcnn.core.dataset.Cloud95Dataset.rst","source\\generated\\pysegcnn.core.dataset.ImageDataset.rst","source\\generated\\pysegcnn.core.dataset.SparcsDataset.rst","source\\generated\\pysegcnn.core.dataset.StandardEoDataset.rst","source\\generated\\pysegcnn.core.layers.Block.rst","source\\generated\\pysegcnn.core.layers.Conv2dSame.rst","source\\generated\\pysegcnn.core.layers.ConvBnReluMaxPool.rst","source\\generated\\pysegcnn.core.layers.ConvBnReluMaxUnpool.rst","source\\generated\\pysegcnn.core.layers.ConvBnReluUpsample.rst","source\\generated\\pysegcnn.core.layers.Decoder.rst","source\\generated\\pysegcnn.core.layers.DecoderBlock.rst","source\\generated\\pysegcnn.core.layers.Encoder.rst","source\\generated\\pysegcnn.core.layers.EncoderBlock.rst","source\\generated\\pysegcnn.core.models.Network.rst","source\\generated\\pysegcnn.core.models.UNet.rst","source\\generated\\pysegcnn.core.transforms.Augment.rst","source\\installation.rst","source\\requirements.rst"],objects:{"pysegcnn.core.dataset":{Cloud95Dataset:[2,0,1,""],ImageDataset:[3,0,1,""],SparcsDataset:[4,0,1,""],StandardEoDataset:[5,0,1,""]},"pysegcnn.core.dataset.Cloud95Dataset":{__init__:[2,1,1,""]},"pysegcnn.core.dataset.ImageDataset":{__init__:[3,1,1,""]},"pysegcnn.core.dataset.SparcsDataset":{__init__:[4,1,1,""]},"pysegcnn.core.dataset.StandardEoDataset":{__init__:[5,1,1,""]},"pysegcnn.core.layers":{Block:[6,0,1,""],Conv2dSame:[7,0,1,""],ConvBnReluMaxPool:[8,0,1,""],ConvBnReluMaxUnpool:[9,0,1,""],ConvBnReluUpsample:[10,0,1,""],Decoder:[11,0,1,""],DecoderBlock:[12,0,1,""],Encoder:[13,0,1,""],EncoderBlock:[14,0,1,""]},"pysegcnn.core.layers.Block":{__init__:[6,1,1,""]},"pysegcnn.core.layers.Conv2dSame":{__init__:[7,1,1,""]},"pysegcnn.core.layers.ConvBnReluMaxPool":{__init__:[8,1,1,""]},"pysegcnn.core.layers.ConvBnReluMaxUnpool":{__init__:[9,1,1,""]},"pysegcnn.core.layers.ConvBnReluUpsample":{__init__:[10,1,1,""]},"pysegcnn.core.layers.Decoder":{__init__:[11,1,1,""]},"pysegcnn.core.layers.DecoderBlock":{__init__:[12,1,1,""]},"pysegcnn.core.layers.Encoder":{__init__:[13,1,1,""]},"pysegcnn.core.layers.EncoderBlock":{__init__:[14,1,1,""]},"pysegcnn.core.models":{Network:[15,0,1,""],UNet:[16,0,1,""]},"pysegcnn.core.models.Network":{__init__:[15,1,1,""]},"pysegcnn.core.models.UNet":{__init__:[16,1,1,""]},"pysegcnn.core.transforms":{Augment:[17,0,1,""]},"pysegcnn.core.transforms.Augment":{__init__:[17,1,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","method","Python method"]},objtypes:{"0":"py:class","1":"py:method"},terms:{"1x1":16,"2014":4,"2020":2,"2x2":[8,9,16],"case":18,"class":[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],"default":[2,3,4,5,18],"final":18,"function":1,"import":18,"int":[2,3,4,5,6,7,8,9,10,11,12,13,14,16],"new":15,"public":0,"return":[6,8,9,10,12,14,17],"true":[2,3,4,5,11],"while":[0,18],And:19,For:[0,2,3,4,5],The:[0,2,3,4,5,6,7,11,13,15,16,18],Used:[2,3,4,5],Useful:[2,3,4,5],__init__:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],abl:18,abov:[5,18],accur:17,activ:18,add:18,addit:[6,7,8,9,10,11,12,13,14,16],after:18,all:[2,3,4,5,18,19],altern:18,amount:7,ani:18,api:0,appli:[11,16,17],architechur:[11,13],architectur:1,arg:7,argument:[6,7,8,9,10,11,12,13,14,16],attribut:[6,7,8,9,10,11,12,13,14,15,16],augment:[2,3,4,5],avail:1,band:[2,3,4,5],base:[0,3,5,15],basic:6,batch:16,batchnorm:[8,9,10],below:18,block:[8,9,10,11,12,13,14,16],bolzano:0,bool:[2,3,4,5,11,16],both:19,box:1,build:[0,1,18,19],cach:13,calcul:7,can:[5,18,19],care:19,ccisnow:18,center:[2,3,4,5],channel:[6,7,8,9,10,11,12,13,14,16,18],chronolog:[2,3,4,5],classif:16,classifi:16,clone:18,cloud:2,code:[0,18],com:0,command:18,compliant:[1,3],compos:[2,3,4,5],compose_scen:5,conda:19,config:18,connect:[11,16],constant:[2,3,4,5],contain:17,conv2d:7,conv2dsam:[6,8,9,10,11,12,13,14,16],conv:6,convbnrelumaxpool:[11,13],convbnrelumaxunpool:11,convent:[2,3,4,5],convolut:[1,6,7,8,9,10,11,12,13,14,16],convolv:7,copi:18,correspond:[2,3,4,5],creat:18,current:[1,18],custom:1,daniel:0,data:[2,3,4,5],dataload:3,decod:[12,13,16],decoderblock:11,deep:0,defin:[11,13,18],depend:18,depth:[11,13],design:0,determin:[11,13],develop:0,dict:[6,7,8,9,10,11,12,13,14,16],dictionari:13,dilat:7,dimens:7,directli:5,directori:[1,2,3,4,5,18],distinct:[2,3,4,5],divid:[2,3,4,5],divis:[2,3,4,5],document:19,doe:[6,8,9,10,12,14],dure:3,each:[2,3,4,5,11,13,15,16,17],earth:[0,5],element:[11,13],enabl:3,encod:[11,14,16],encoderblock:[11,13],env:18,environ:19,epoch:16,eurac:0,evenli:[2,3,4,5],exampl:[5,11,13],except:18,explicitli:0,express:[2,3,4,5],fals:[2,3,4,5],featur:[11,13],file:[2,3,4,5,15,18,19],filter:[11,13,16],first:[11,13,18],follow:[1,5,16,18],forg:18,framework:0,frisinghelli:0,from:[3,11,16,18],fulli:0,further:0,futur:0,gdal:19,gener:[0,2,3,4,5,11,13,15],git:18,gitlab:18,given:7,gmail:0,gnu:0,ground:[2,3,4,5],gt_pattern:[2,3,4,5],guid:18,handi:3,hardwar:18,has:[7,11,13],have:18,hay:4,heavili:18,help:17,here:[18,19],http:18,hugh:4,idea:0,imag:[1,2,3,4,5,11,13,16],imageri:0,implement:[1,5,11,13,15,16],in_channel:[6,7,8,9,10,12,14,16],indic:13,inf:18,inform:0,inherit:[3,5,15],initi:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],input:[2,3,4,5,6,7,8,9,10,11,12,13,14,16],instal:[0,19],instanc:[2,3,4,5,6,8,9,10,12,14,17],instanci:[11,13],institut:0,instruct:18,intermedi:13,interpret:18,invarianttransform:17,item:[2,3,4,5],its:7,kei:13,kernel:7,kernel_s:7,keyword:[7,16],kwarg:[6,7,8,9,10,11,12,13,14,16],label:[2,3,4,5],layer:16,learn:0,length:[11,13],line:18,linux:19,list:[1,2,3,4,5,7,11,13,16,17,19],machin:[0,18],mai:18,match:[2,3,4,5],matplotlib:19,max:[8,9,13,16],method:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],model:[3,11,13],modifi:16,modulelist:[11,13],mohajerani:2,multispectr:[0,1,3],name:[2,3,4,5,18],navig:18,nclass:16,ndarrai:[11,13],nearest:10,neighbor:10,net:16,nfilter:16,none:[2,3,4,5,15,17],normal:16,number:[6,7,8,9,10,11,12,13,14,16],numpi:[11,13,19],observ:[0,5],offici:18,onc:18,onli:[2,3,4,5],open:1,oper:16,option:[2,3,4,5,11],order:17,origin:[2,3,4,5],otherwis:0,out:1,out_channel:[6,7,8,9,10,12,14],output:[6,7,8,9,10,12,13,14],packag:[0,19],pad:[2,3,4,5,7],pad_height:7,pad_width:7,page:1,paramet:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],part:0,pass:[6,7,8,9,10,11,12,13,14,16],path:[2,3,4,5,15],pathlib:15,pip:18,pleas:0,pool:[8,13],posit:7,preserv:7,primarili:0,provid:18,pure:19,pysegcnn:[1,19],pytest:19,python:[18,19],pytorch:[0,1,3,16,19],rais:[6,8,9,10,12,14],random:[2,3,4,5],recommend:18,refer:0,regur:[2,3,4,5],relu:[8,9,10],remain:5,remsen:18,repositori:[0,18],reproduc:[2,3,4,5],requir:[0,13,18],research:0,root:[2,3,4,5,18],root_dir:[2,3,4,5],run:18,saeedi:2,same:[7,11,13],sampl:[2,3,4,5,18],satellit:0,save:15,scene:[2,3,4,5],scene_id_1:5,scene_id_1_b1:5,scene_id_1_b2:5,scene_id_1_bn:5,scene_id_2:5,scene_id_2_b1:5,scene_id_2_b2:5,scene_id_2_bn:5,scene_id_n:5,search:[2,3,4,5],see:[0,5,11,13,17,19],seed:[2,3,4,5],self:17,semant:0,sequenc:17,sequenti:[6,8,9,10,12,14],seri:[2,3,4,5],set:[2,3,4,5],shape:[2,3,4,5,7],share:5,ship:19,should:[11,13,18],signatur:17,size:[2,3,4,5,7],skip:[11,16],slightli:16,some:[1,18],sort:[2,3,4,5],sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],spaceborn:1,sparc:4,sparcsdataset:5,spatial:7,specif:18,spectral:[2,3,4,5],sphinx:19,sphinx_rtd_them:19,split:[2,3,4,5],squar:[2,3,4,5],standard:[1,3,5],standard_eo_structur:5,state:[0,15],state_fil:15,str:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],stride:7,structur:[1,5],style:5,subclass:[11,13],subdirectori:[2,3,4,5],success:18,successfulli:18,support:[1,18],system:18,take:[18,19],tensor:13,termin:18,test:[2,3,4,5],therefor:18,thi:[0,1,3,5,18],tif:[2,3,4,5],tile:[2,3,4,5],tile_s:[2,3,4,5],time:[2,3,4,5],togeth:[2,3,4,5],torch:[3,6,7,8,9,10,11,12,13,14],total:[2,3,4,5],train:[2,3,4,5,16],transfer:5,transform:[2,3,4,5],truth:[2,3,4,5],tupl:[7,17],type:[17,18],typeerror:[6,8,9,10,12,14],under:0,unet:[11,13],unibz:18,unpool:[9,16],untransform:[2,3,4,5],upsampl:[10,16],use:[2,3,4,5,18,19],use_band:[2,3,4,5],used:[2,3,4,5],using:[18,19],util:[3,5],valid:[2,3,4,5],valu:[2,3,4,5],varianttransform:17,verifi:18,version:[2,3,4,5,18],want:[15,19],websit:18,when:[11,13],where:15,whether:[2,3,4,5,11,16],window:19,within:18,work:[0,19],wrote:0,yml:[18,19],you:[5,15,18,19],your:[5,18],zero:[2,3,4,5]},titles:["PySegCNN: Image segmentation with convolutional neural networks in Python","API Reference","pysegcnn.core.dataset.Cloud95Dataset","pysegcnn.core.dataset.ImageDataset","pysegcnn.core.dataset.SparcsDataset","pysegcnn.core.dataset.StandardEoDataset","pysegcnn.core.layers.Block","pysegcnn.core.layers.Conv2dSame","pysegcnn.core.layers.ConvBnReluMaxPool","pysegcnn.core.layers.ConvBnReluMaxUnpool","pysegcnn.core.layers.ConvBnReluUpsample","pysegcnn.core.layers.Decoder","pysegcnn.core.layers.DecoderBlock","pysegcnn.core.layers.Encoder","pysegcnn.core.layers.EncoderBlock","pysegcnn.core.models.Network","pysegcnn.core.models.UNet","pysegcnn.core.transforms.Augment","Installation","Requirements"],titleterms:{"class":1,Using:0,acknowledg:0,api:1,architechtur:1,augment:17,block:6,cloud95dataset:2,conda:18,contact:0,contributor:0,conv2dsam:7,convbnrelumaxpool:8,convbnrelumaxunpool:9,convbnreluupsampl:10,convolut:0,core:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],dataset:[1,2,3,4,5],decod:[1,11],decoderblock:12,depend:19,download:18,encod:[1,13],encoderblock:14,environ:18,framework:19,gener:1,imag:0,imagedataset:3,instal:18,layer:[1,6,7,8,9,10,11,12,13,14],learn:19,licens:0,machin:19,manag:18,model:[1,15,16],network:[0,1,15],neural:[0,1],packag:18,pysegcnn:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],python:0,pytorch:18,raster:19,refer:1,requir:19,scipi:19,segment:0,sparcsdataset:4,specif:1,stack:19,standardeodataset:5,test:19,tool:19,transform:17,unet:16}}) \ No newline at end of file +Search.setIndex({docnames:["index","source/api","source/generated/pysegcnn.core.dataset.Cloud95Dataset","source/generated/pysegcnn.core.dataset.ImageDataset","source/generated/pysegcnn.core.dataset.SparcsDataset","source/generated/pysegcnn.core.dataset.StandardEoDataset","source/generated/pysegcnn.core.layers.Block","source/generated/pysegcnn.core.layers.Conv2dSame","source/generated/pysegcnn.core.layers.ConvBnReluMaxPool","source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool","source/generated/pysegcnn.core.layers.ConvBnReluUpsample","source/generated/pysegcnn.core.layers.Decoder","source/generated/pysegcnn.core.layers.DecoderBlock","source/generated/pysegcnn.core.layers.Encoder","source/generated/pysegcnn.core.layers.EncoderBlock","source/generated/pysegcnn.core.models.Network","source/generated/pysegcnn.core.models.UNet","source/generated/pysegcnn.core.transforms.Augment","source/installation","source/requirements"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":2,"sphinx.domains.rst":2,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst","source\\api.rst","source\\generated\\pysegcnn.core.dataset.Cloud95Dataset.rst","source\\generated\\pysegcnn.core.dataset.ImageDataset.rst","source\\generated\\pysegcnn.core.dataset.SparcsDataset.rst","source\\generated\\pysegcnn.core.dataset.StandardEoDataset.rst","source\\generated\\pysegcnn.core.layers.Block.rst","source\\generated\\pysegcnn.core.layers.Conv2dSame.rst","source\\generated\\pysegcnn.core.layers.ConvBnReluMaxPool.rst","source\\generated\\pysegcnn.core.layers.ConvBnReluMaxUnpool.rst","source\\generated\\pysegcnn.core.layers.ConvBnReluUpsample.rst","source\\generated\\pysegcnn.core.layers.Decoder.rst","source\\generated\\pysegcnn.core.layers.DecoderBlock.rst","source\\generated\\pysegcnn.core.layers.Encoder.rst","source\\generated\\pysegcnn.core.layers.EncoderBlock.rst","source\\generated\\pysegcnn.core.models.Network.rst","source\\generated\\pysegcnn.core.models.UNet.rst","source\\generated\\pysegcnn.core.transforms.Augment.rst","source\\installation.rst","source\\requirements.rst"],objects:{"pysegcnn.core.dataset":{Cloud95Dataset:[2,0,1,""],ImageDataset:[3,0,1,""],SparcsDataset:[4,0,1,""],StandardEoDataset:[5,0,1,""]},"pysegcnn.core.dataset.Cloud95Dataset":{__init__:[2,1,1,""]},"pysegcnn.core.dataset.ImageDataset":{__init__:[3,1,1,""]},"pysegcnn.core.dataset.SparcsDataset":{__init__:[4,1,1,""]},"pysegcnn.core.dataset.StandardEoDataset":{__init__:[5,1,1,""]},"pysegcnn.core.layers":{Block:[6,0,1,""],Conv2dSame:[7,0,1,""],ConvBnReluMaxPool:[8,0,1,""],ConvBnReluMaxUnpool:[9,0,1,""],ConvBnReluUpsample:[10,0,1,""],Decoder:[11,0,1,""],DecoderBlock:[12,0,1,""],Encoder:[13,0,1,""],EncoderBlock:[14,0,1,""]},"pysegcnn.core.layers.Block":{__init__:[6,1,1,""]},"pysegcnn.core.layers.Conv2dSame":{__init__:[7,1,1,""]},"pysegcnn.core.layers.ConvBnReluMaxPool":{__init__:[8,1,1,""]},"pysegcnn.core.layers.ConvBnReluMaxUnpool":{__init__:[9,1,1,""]},"pysegcnn.core.layers.ConvBnReluUpsample":{__init__:[10,1,1,""]},"pysegcnn.core.layers.Decoder":{__init__:[11,1,1,""]},"pysegcnn.core.layers.DecoderBlock":{__init__:[12,1,1,""]},"pysegcnn.core.layers.Encoder":{__init__:[13,1,1,""]},"pysegcnn.core.layers.EncoderBlock":{__init__:[14,1,1,""]},"pysegcnn.core.models":{Network:[15,0,1,""],UNet:[16,0,1,""]},"pysegcnn.core.models.Network":{__init__:[15,1,1,""]},"pysegcnn.core.models.UNet":{__init__:[16,1,1,""]},"pysegcnn.core.transforms":{Augment:[17,0,1,""]},"pysegcnn.core.transforms.Augment":{__init__:[17,1,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","method","Python method"]},objtypes:{"0":"py:class","1":"py:method"},terms:{"1x1":16,"2014":4,"2020":2,"2x2":[8,9,16],"case":18,"class":[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],"default":[2,3,4,5,18],"enum":3,"final":18,"function":1,"import":18,"int":[2,3,4,5,6,7,8,9,10,11,12,13,14,16],"new":15,"public":0,"return":[6,8,9,10,12,14,17],"true":[2,3,4,5,11],"while":[0,18],And:19,For:[0,2,3,4,5],The:[0,2,3,4,5,6,7,11,13,15,16,18],Used:[2,3,4,5],Useful:[2,3,4,5],__init__:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],abl:18,abov:[5,18],accur:17,activ:18,add:18,addit:[6,7,8,9,10,11,12,13,14,16],after:18,all:[2,3,4,5,18,19],altern:18,amount:[3,7],ani:18,api:0,appli:[11,16,17],architechur:[11,13],architectur:1,arg:7,argument:[6,7,8,9,10,11,12,13,14,16],attribut:[3,6,7,8,9,10,11,12,13,14,15,16],augment:[2,3,4,5],avail:1,band:[2,3,4,5],base:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],basic:6,batch:16,batchnorm:[8,9,10],below:18,block:[8,9,10,11,12,13,14,16],bolzano:0,bool:[2,3,4,5,11,16],both:19,bottom:3,box:1,build:[0,1,18,19],cach:13,calcul:7,can:[5,18,19],care:19,ccisnow:18,center:[2,3,4,5],channel:[6,7,8,9,10,11,12,13,14,16,18],chronolog:[2,3,4,5],classif:16,classifi:16,clone:18,cloud:2,code:[0,18],color:3,com:0,command:18,compliant:[1,3],compos:[2,3,4,5],compose_scen:5,conda:19,config:18,connect:[11,16],constant:[2,3,4,5],contain:17,conv2d:7,conv2dsam:[6,8,9,10,11,12,13,14,16],conv:[6,7],convbnrelumaxpool:[11,13],convbnrelumaxunpool:11,convent:[2,3,4,5],convolut:[1,6,7,8,9,10,11,12,13,14,16],convolv:7,copi:18,corner:3,correspond:[2,3,4,5],creat:18,current:[1,18],custom:1,cval:3,daniel:0,data:[2,3,4,5],dataload:3,decod:[12,13,16],decoderblock:[9,10,11],deep:0,defin:[11,13,18],depend:18,depth:[11,13],deriv:3,design:0,determin:[11,13],develop:0,dict:[3,6,7,8,9,10,11,12,13,14,16],dictionari:[3,13],dilat:7,dimens:7,directli:5,directori:[1,2,3,4,5,18],distinct:[2,3,4,5],divid:[2,3,4,5],divis:[2,3,4,5],document:19,doe:[6,8,9,10,12,14],dure:3,each:[2,3,4,5,11,13,15,16,17],earth:[0,5],element:[11,13],enabl:3,encod:[11,14,16],encoderblock:[8,11,13],enumer:3,env:18,environ:19,epoch:16,eurac:0,evenli:[2,3,4,5],exampl:[5,11,13],except:18,explicitli:0,express:[2,3,4,5],fals:[2,3,4,5],featur:[11,13],file:[2,3,4,5,15,18,19],filter:[11,13,16],first:[11,13,18],follow:[1,5,16,18],forg:18,framework:0,frisinghelli:0,from:[3,11,16,18],fulli:0,further:0,futur:0,gdal:19,gener:[0,2,3,4,5,11,13,15],git:18,gitlab:18,given:7,gmail:0,gnu:0,ground:[2,3,4,5],gt_pattern:[2,3,4,5],guid:18,handi:3,hardwar:18,has:[3,7,11,13],have:18,hay:4,heavili:18,height:3,help:17,here:[18,19],http:18,hugh:4,idea:0,ids:3,imag:[1,2,3,4,5,11,13,16],imagedataset:[2,5],imageri:0,implement:[1,5,11,13,15,16],in_channel:[6,7,8,9,10,12,14,16],indic:13,inf:18,inform:0,inherit:[3,5,15],initi:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],input:[2,3,4,5,6,7,8,9,10,11,12,13,14,16],instal:[0,19],instanc:[2,3,4,5,6,8,9,10,12,14,17],instanci:[11,13],institut:0,instruct:18,intermedi:13,interpret:18,invarianttransform:17,item:[2,3,4,5],its:7,kei:[3,13],kernel:7,kernel_s:7,keyword:[7,16],kwarg:[6,7,8,9,10,11,12,13,14,16],label:[2,3,4,5],landsat8:3,layer:16,learn:0,left:3,length:[11,13],line:18,linux:19,list:[1,2,3,4,5,7,11,13,16,17,19],machin:[0,18],mai:18,match:[2,3,4,5],matplotlib:19,max:[8,9,13,16],method:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],model:[3,11,13],modifi:16,modul:[6,7,11,13,15],modulelist:[11,13],mohajerani:2,multispectr:[0,1,3],name:[2,3,4,5,18],navig:18,nclass:16,ndarrai:[11,13],nearest:10,neighbor:10,nest:3,net:16,network:16,nfilter:16,none:[2,3,4,5,15,17],normal:16,number:[3,6,7,8,9,10,11,12,13,14,16],numpi:[11,13,19],object:17,observ:[0,5],offici:18,onc:18,onli:[2,3,4,5],open:1,oper:16,option:[2,3,4,5,11],order:17,origin:[2,3,4,5],otherwis:[0,3],out:1,out_channel:[6,7,8,9,10,12,14],output:[6,7,8,9,10,12,13,14],packag:[0,19],pad:[2,3,4,5,7],pad_height:7,pad_width:7,page:1,paramet:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],part:0,pass:[6,7,8,9,10,11,12,13,14,16],path:[2,3,4,5,15],pathlib:[3,15],pip:18,pleas:0,pool:[8,13],posit:7,preserv:7,primarili:0,provid:18,pure:19,pysegcnn:[1,19],pytest:19,python:[18,19],pytorch:[0,1,3,16,19],rais:[6,8,9,10,12,14],random:[2,3,4,5],recommend:18,refer:0,regur:[2,3,4,5],relu:[8,9,10],remain:5,remsen:18,repositori:[0,18],repres:3,reproduc:[2,3,4,5],requir:[0,3,13,18],research:0,right:3,root:[2,3,4,5,18],root_dir:[2,3,4,5],run:18,saeedi:2,same:[7,11,13],sampl:[2,3,4,5,18],satellit:0,save:15,scene:[2,3,4,5],scene_id_1:5,scene_id_1_b1:5,scene_id_1_b2:5,scene_id_1_bn:5,scene_id_2:5,scene_id_2_b1:5,scene_id_2_b2:5,scene_id_2_bn:5,scene_id_n:5,search:[2,3,4,5],see:[0,3,5,11,13,17,19],seed:[2,3,4,5],self:17,semant:0,sensor:3,sequenc:17,sequenti:[6,8,9,10,12,14],seri:[2,3,4,5],set:[2,3,4,5],shape:[2,3,4,5,7],share:5,ship:19,should:[11,13,18],signatur:17,size:[2,3,4,5,7],skip:[11,16],slightli:16,some:[1,18],sort:[2,3,4,5],sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],spaceborn:1,sparc:4,sparcsdataset:5,spatial:7,specif:18,spectral:[2,3,4,5],sphinx:19,sphinx_rtd_them:19,split:[2,3,4,5],squar:[2,3,4,5],standard:[1,3,5],standard_eo_structur:5,standardeodataset:4,state:[0,15],state_fil:15,str:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],stride:7,structur:[1,5],style:5,subclass:[11,13],subdirectori:[2,3,4,5],success:18,successfulli:18,support:[1,18],system:18,take:[18,19],tensor:13,termin:18,test:[2,3,4,5],therefor:18,thi:[0,1,3,5,18],tif:[2,3,4,5],tile:[2,3,4,5],tile_s:[2,3,4,5],time:[2,3,4,5],togeth:[2,3,4,5],top:3,topleft:3,torch:[3,6,7,8,9,10,11,12,13,14,15],total:[2,3,4,5],train:[2,3,4,5,16],transfer:5,transform:[2,3,4,5],truth:[2,3,4,5],tupl:[3,7,17],type:[17,18],typeerror:[6,8,9,10,12,14],under:0,unet:[11,13],unibz:18,unpool:[9,16],untransform:[2,3,4,5],upsampl:[10,16],use:[2,3,4,5,18,19],use_band:[2,3,4,5],used:[2,3,4,5],using:[18,19],util:[3,5],valid:[2,3,4,5],valu:[2,3,4,5],varianttransform:17,verifi:18,version:[2,3,4,5,18],want:[15,19],websit:18,when:[3,11,13],where:15,whether:[2,3,4,5,11,16],width:3,window:19,within:[3,18],work:[0,19],wrote:0,yml:[18,19],you:[5,15,18,19],your:[5,18],zero:[2,3,4,5]},titles:["PySegCNN: Image segmentation with convolutional neural networks in Python","API Reference","pysegcnn.core.dataset.Cloud95Dataset","pysegcnn.core.dataset.ImageDataset","pysegcnn.core.dataset.SparcsDataset","pysegcnn.core.dataset.StandardEoDataset","pysegcnn.core.layers.Block","pysegcnn.core.layers.Conv2dSame","pysegcnn.core.layers.ConvBnReluMaxPool","pysegcnn.core.layers.ConvBnReluMaxUnpool","pysegcnn.core.layers.ConvBnReluUpsample","pysegcnn.core.layers.Decoder","pysegcnn.core.layers.DecoderBlock","pysegcnn.core.layers.Encoder","pysegcnn.core.layers.EncoderBlock","pysegcnn.core.models.Network","pysegcnn.core.models.UNet","pysegcnn.core.transforms.Augment","Installation","Requirements"],titleterms:{"class":1,Using:0,acknowledg:0,api:1,architechtur:1,augment:17,block:6,cloud95dataset:2,conda:18,contact:0,contributor:0,conv2dsam:7,convbnrelumaxpool:8,convbnrelumaxunpool:9,convbnreluupsampl:10,convolut:0,core:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],dataset:[1,2,3,4,5],decod:[1,11],decoderblock:12,depend:19,download:18,encod:[1,13],encoderblock:14,environ:18,framework:19,gener:1,imag:0,imagedataset:3,instal:18,layer:[1,6,7,8,9,10,11,12,13,14],learn:19,licens:0,machin:19,manag:18,model:[1,15,16],network:[0,1,15],neural:[0,1],packag:18,pysegcnn:[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18],python:0,pytorch:18,raster:19,refer:1,requir:19,scipi:19,segment:0,sparcsdataset:4,specif:1,stack:19,standardeodataset:5,test:19,tool:19,transform:17,unet:16}}) \ No newline at end of file diff --git a/docs/_build/html/source/generated/pysegcnn.core.dataset.Cloud95Dataset.html b/docs/_build/html/source/generated/pysegcnn.core.dataset.Cloud95Dataset.html index 78fe3ebf4be34eb40a674e610a52ff4928fa76dc..d6f378e4b53a315a1e299551088ad196339728e5 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.dataset.Cloud95Dataset.html +++ b/docs/_build/html/source/generated/pysegcnn.core.dataset.Cloud95Dataset.html @@ -170,7 +170,8 @@ <dl class="py class"> <dt id="pysegcnn.core.dataset.Cloud95Dataset"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.dataset.</code><code class="sig-name descname">Cloud95Dataset</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt\\.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#Cloud95Dataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.Cloud95Dataset" title="Permalink to this definition">¶</a></dt> -<dd><p>Class for the <a class="reference external" href="https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset">Cloud-95</a> dataset by <a class="reference external" href="https://arxiv.org/abs/2001.08768">Mohajerani & Saeedi (2020)</a>.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.dataset.ImageDataset.html#pysegcnn.core.dataset.ImageDataset" title="pysegcnn.core.dataset.ImageDataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.dataset.ImageDataset</span></code></a></p> +<p>Class for the <a class="reference external" href="https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset">Cloud-95</a> dataset by <a class="reference external" href="https://arxiv.org/abs/2001.08768">Mohajerani & Saeedi (2020)</a>.</p> <dl class="py method"> <dt id="pysegcnn.core.dataset.Cloud95Dataset.__init__"> <code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt\\.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#Cloud95Dataset.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.Cloud95Dataset.__init__" title="Permalink to this definition">¶</a></dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.dataset.ImageDataset.html b/docs/_build/html/source/generated/pysegcnn.core.dataset.ImageDataset.html index 6ee1bfb83bd7c91b22ac749927f6d6ab8c58c8b4..2b5fde7a45eda198e8c881a71383c2b105fc779c 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.dataset.ImageDataset.html +++ b/docs/_build/html/source/generated/pysegcnn.core.dataset.ImageDataset.html @@ -169,14 +169,76 @@ <h1>pysegcnn.core.dataset.ImageDataset<a class="headerlink" href="#pysegcnn-core-dataset-imagedataset" title="Permalink to this headline">¶</a></h1> <dl class="py class"> <dt id="pysegcnn.core.dataset.ImageDataset"> -<em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.dataset.</code><code class="sig-name descname">ImageDataset</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#ImageDataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.ImageDataset" title="Permalink to this definition">¶</a></dt> -<dd><p>Base class for multispectral image data.</p> +<em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.dataset.</code><code class="sig-name descname">ImageDataset</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt\\.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#ImageDataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.ImageDataset" title="Permalink to this definition">¶</a></dt> +<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.utils.data.dataset.Dataset</span></code></p> +<p>Base class for multispectral image data.</p> <p>Inheriting from <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.utils.data.Dataset</span></code> to be compliant to the PyTorch standard. This enables the use of the handy <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.utils.data.DataLoader</span></code> class during model training.</p> +<dl class="field-list"> +<dt class="field-odd">Attributes</dt> +<dd class="field-odd"><dl> +<dt><strong>root_dir</strong><span class="classifier"><cite>str</cite></span></dt><dd><p>The root directory, path to the dataset.</p> +</dd> +<dt><strong>use_bands</strong><span class="classifier"><cite>list</cite> [<cite>str</cite>]</span></dt><dd><p>List of the spectral bands to use during model training.</p> +</dd> +<dt><strong>tile_size</strong><span class="classifier"><cite>int</cite> or <cite>None</cite></span></dt><dd><p>The size of the tiles.</p> +</dd> +<dt><strong>pad</strong><span class="classifier"><cite>bool</cite></span></dt><dd><p>Whether to center pad the input image.</p> +</dd> +<dt><strong>gt_pattern</strong><span class="classifier"><cite>str</cite></span></dt><dd><p>A regural expression to match the ground truth naming convention.</p> +</dd> +<dt><strong>sort</strong><span class="classifier"><cite>bool</cite></span></dt><dd><p>Whether to chronologically sort the samples.</p> +</dd> +<dt><strong>seed</strong><span class="classifier"><cite>int</cite></span></dt><dd><p>The random seed.</p> +</dd> +<dt><strong>transforms</strong><span class="classifier"><cite>list</cite></span></dt><dd><p>List of <a class="reference internal" href="pysegcnn.core.transforms.Augment.html#pysegcnn.core.transforms.Augment" title="pysegcnn.core.transforms.Augment"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.transforms.Augment</span></code></a> instances.</p> +</dd> +<dt><strong>size</strong><span class="classifier"><cite>tuple</cite> [<cite>int</cite>]</span></dt><dd><p>The size of an image of the dataset.</p> +</dd> +<dt><strong>sensor</strong><span class="classifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">enum.Enum</span></code></span></dt><dd><p>An enumeration of the bands of sensor the dataset is derived from, +see e.g. <code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.constants.Landsat8</span></code>.</p> +</dd> +<dt><strong>bands</strong><span class="classifier"><cite>dict</cite> [<cite>int</cite>, <cite>str</cite>]</span></dt><dd><p>The spectral bands of <code class="docutils literal notranslate"><span class="pre">sensor</span></code>. The keys are the number and the +values are the name of the spectral bands.</p> +</dd> +<dt><strong>labels</strong><span class="classifier"><cite>dict</cite> [<cite>int</cite>, <cite>dict</cite>]</span></dt><dd><p>The label dictionary. The keys are the values of the class labels +in the ground truth. Each nested <cite>dict</cite> has keys:</p> +<blockquote> +<div><dl class="simple"> +<dt><code class="docutils literal notranslate"><span class="pre">'color'</span></code></dt><dd><p>A named color (<cite>str</cite>).</p> +</dd> +<dt><code class="docutils literal notranslate"><span class="pre">'label'</span></code></dt><dd><p>The name of the class label (<cite>str</cite>).</p> +</dd> +</dl> +</div></blockquote> +</dd> +<dt><strong>tiles</strong><span class="classifier"><cite>int</cite></span></dt><dd><p>Number of tiles with size <code class="docutils literal notranslate"><span class="pre">(tile_size,</span> <span class="pre">tile_size)</span></code> within an image.</p> +</dd> +<dt><strong>padding</strong><span class="classifier"><cite>tuple</cite> [<cite>int</cite>]</span></dt><dd><p>The amount of padding, (bottom, left, top, right).</p> +</dd> +<dt><strong>height</strong><span class="classifier"><cite>int</cite></span></dt><dd><p>The height of a padded image.</p> +</dd> +<dt><strong>width</strong><span class="classifier"><cite>int</cite></span></dt><dd><p>The width of a padded image.</p> +</dd> +<dt><strong>topleft</strong><span class="classifier"><cite>dict</cite> [<cite>int</cite>, <cite>tuple</cite>]</span></dt><dd><p>The topleft corners of the tiles. The keys of are the tile ids (<cite>int</cite>) +and the values are the topleft corners (y, x) of the tiles.</p> +</dd> +<dt><strong>cval</strong><span class="classifier"><cite>int</cite></span></dt><dd><p>When padding, <code class="docutils literal notranslate"><span class="pre">cval</span></code> is the value of the “no data†label in the +ground truth. Otherwise, <code class="docutils literal notranslate"><span class="pre">cval=0</span></code>.</p> +</dd> +<dt><strong>gt</strong><span class="classifier"><cite>list</cite> [<cite>str</cite> or <code class="xref py py-class docutils literal notranslate"><span class="pre">pathlib.Path</span></code>]</span></dt><dd><p>List of the ground truth images.</p> +</dd> +<dt><strong>keys</strong><span class="classifier"><cite>list</cite></span></dt><dd><p>List of required keys for each dictionary in <code class="docutils literal notranslate"><span class="pre">scenes</span></code>.</p> +</dd> +<dt><strong>scenes</strong><span class="classifier"><cite>list</cite> [<cite>dict</cite>]</span></dt><dd><p>List of dictionaries representing the samples of the dataset.</p> +</dd> +</dl> +</dd> +</dl> <dl class="py method"> <dt id="pysegcnn.core.dataset.ImageDataset.__init__"> -<code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#ImageDataset.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.ImageDataset.__init__" title="Permalink to this definition">¶</a></dt> +<code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt\\.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#ImageDataset.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.ImageDataset.__init__" title="Permalink to this definition">¶</a></dt> <dd><p>Initialize.</p> <dl class="field-list"> <dt class="field-odd">Parameters</dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.dataset.SparcsDataset.html b/docs/_build/html/source/generated/pysegcnn.core.dataset.SparcsDataset.html index 37b1630b6319393e6c0e06e9c93ee29ba373a3af..70eebc401ce11474723a1d0d081687ee8276ae4f 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.dataset.SparcsDataset.html +++ b/docs/_build/html/source/generated/pysegcnn.core.dataset.SparcsDataset.html @@ -170,7 +170,8 @@ <dl class="py class"> <dt id="pysegcnn.core.dataset.SparcsDataset"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.dataset.</code><code class="sig-name descname">SparcsDataset</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt\\.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#SparcsDataset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.SparcsDataset" title="Permalink to this definition">¶</a></dt> -<dd><p>Class for the <a class="reference external" href="https://www.usgs.gov/land-resources/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs-validation">Sparcs</a> dataset by <a class="reference external" href="https://www.mdpi.com/2072-4292/6/6/4907">Hughes & Hayes (2014)</a>.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.dataset.StandardEoDataset.html#pysegcnn.core.dataset.StandardEoDataset" title="pysegcnn.core.dataset.StandardEoDataset"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.dataset.StandardEoDataset</span></code></a></p> +<p>Class for the <a class="reference external" href="https://www.usgs.gov/land-resources/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs-validation">Sparcs</a> dataset by <a class="reference external" href="https://www.mdpi.com/2072-4292/6/6/4907">Hughes & Hayes (2014)</a>.</p> <dl class="py method"> <dt id="pysegcnn.core.dataset.SparcsDataset.__init__"> <code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">root_dir</span></em>, <em class="sig-param"><span class="n">use_bands</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">tile_size</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">pad</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">gt_pattern</span><span class="o">=</span><span class="default_value">'(.*)gt\\.tif'</span></em>, <em class="sig-param"><span class="n">sort</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">seed</span><span class="o">=</span><span class="default_value">0</span></em>, <em class="sig-param"><span class="n">transforms</span><span class="o">=</span><span class="default_value">[]</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/dataset.html#SparcsDataset.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.dataset.SparcsDataset.__init__" title="Permalink to this definition">¶</a></dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.Block.html b/docs/_build/html/source/generated/pysegcnn.core.layers.Block.html index a0aa79226b3ef4f428d355717407f42f2a3fa9e6..ece641be7eecb29db2ef3366f03229fdd366225e 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.Block.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.Block.html @@ -174,7 +174,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.Block"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">Block</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#Block"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.Block" title="Permalink to this definition">¶</a></dt> -<dd><p>Basic convolutional block.</p> +<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p> +<p>Basic convolutional block.</p> <dl class="field-list"> <dt class="field-odd">Attributes</dt> <dd class="field-odd"><dl> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.Conv2dSame.html b/docs/_build/html/source/generated/pysegcnn.core.layers.Conv2dSame.html index 52f526271b86e8c2c7c460b71b31d2d7a7e717d7..eced900f8164a0a2907cf78547d4073a13646875 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.Conv2dSame.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.Conv2dSame.html @@ -174,7 +174,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.Conv2dSame"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">Conv2dSame</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">*</span><span class="n">args</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#Conv2dSame"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.Conv2dSame" title="Permalink to this definition">¶</a></dt> -<dd><p>A convolution preserving the shape of its input.</p> +<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.conv.Conv2d</span></code></p> +<p>A convolution preserving the shape of its input.</p> <p>Given the kernel size, the dilation and a stride of 1, the padding is calculated such that the output of the convolution has the same spatial dimensions as the input.</p> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.html b/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.html index f037442d93026acc61b2876591af974b12ce80b9..841b252f8ac8803c8519597ecbdac1dae4090a69 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxPool.html @@ -174,7 +174,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.ConvBnReluMaxPool"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">ConvBnReluMaxPool</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#ConvBnReluMaxPool"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.ConvBnReluMaxPool" title="Permalink to this definition">¶</a></dt> -<dd><p>Block of convolution, batchnorm, relu and 2x2 max pool.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.layers.EncoderBlock.html#pysegcnn.core.layers.EncoderBlock" title="pysegcnn.core.layers.EncoderBlock"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.EncoderBlock</span></code></a></p> +<p>Block of convolution, batchnorm, relu and 2x2 max pool.</p> <dl class="py method"> <dt id="pysegcnn.core.layers.ConvBnReluMaxPool.__init__"> <code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#ConvBnReluMaxPool.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.ConvBnReluMaxPool.__init__" title="Permalink to this definition">¶</a></dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.html b/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.html index 3cbf3dc9ca97b3b3700b877bf31d5caeadbea5d2..c0c28e5ab64ebb9445e115ad1e4187353d9bab86 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluMaxUnpool.html @@ -174,7 +174,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.ConvBnReluMaxUnpool"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">ConvBnReluMaxUnpool</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#ConvBnReluMaxUnpool"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.ConvBnReluMaxUnpool" title="Permalink to this definition">¶</a></dt> -<dd><p>Block of convolution, batchnorm, relu and 2x2 max unpool.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.layers.DecoderBlock.html#pysegcnn.core.layers.DecoderBlock" title="pysegcnn.core.layers.DecoderBlock"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.DecoderBlock</span></code></a></p> +<p>Block of convolution, batchnorm, relu and 2x2 max unpool.</p> <dl class="py method"> <dt id="pysegcnn.core.layers.ConvBnReluMaxUnpool.__init__"> <code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#ConvBnReluMaxUnpool.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.ConvBnReluMaxUnpool.__init__" title="Permalink to this definition">¶</a></dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.html b/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.html index c504ad0ca50329c93cc7f67fb37d631317c30688..a18dc0036d26ade3a376686325338d22b25bfe45 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.ConvBnReluUpsample.html @@ -174,7 +174,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.ConvBnReluUpsample"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">ConvBnReluUpsample</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#ConvBnReluUpsample"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.ConvBnReluUpsample" title="Permalink to this definition">¶</a></dt> -<dd><p>Block of convolution, batchnorm, relu and nearest neighbor upsample.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.layers.DecoderBlock.html#pysegcnn.core.layers.DecoderBlock" title="pysegcnn.core.layers.DecoderBlock"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.DecoderBlock</span></code></a></p> +<p>Block of convolution, batchnorm, relu and nearest neighbor upsample.</p> <dl class="py method"> <dt id="pysegcnn.core.layers.ConvBnReluUpsample.__init__"> <code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#ConvBnReluUpsample.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.ConvBnReluUpsample.__init__" title="Permalink to this definition">¶</a></dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.Decoder.html b/docs/_build/html/source/generated/pysegcnn.core.layers.Decoder.html index 761c49f489f68b8851138a325bc468bbf796e155..c3271f73807170e925c8d97e25a372ff163c68e0 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.Decoder.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.Decoder.html @@ -173,7 +173,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.Decoder"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">Decoder</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">filters</span></em>, <em class="sig-param"><span class="n">block</span></em>, <em class="sig-param"><span class="n">skip</span><span class="o">=</span><span class="default_value">True</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#Decoder"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.Decoder" title="Permalink to this definition">¶</a></dt> -<dd><p>Generic convolutional decoder.</p> +<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p> +<p>Generic convolutional decoder.</p> <p>When instanciating an encoder-decoder architechure, <code class="docutils literal notranslate"><span class="pre">filters</span></code> should be the same for <a class="reference internal" href="pysegcnn.core.layers.Encoder.html#pysegcnn.core.layers.Encoder" title="pysegcnn.core.layers.Encoder"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.Encoder</span></code></a> and <a class="reference internal" href="#pysegcnn.core.layers.Decoder" title="pysegcnn.core.layers.Decoder"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.Decoder</span></code></a>.</p> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.DecoderBlock.html b/docs/_build/html/source/generated/pysegcnn.core.layers.DecoderBlock.html index 830aa5d909d6cc11ac9149025e5c0fe5750c5a6b..965fc626449323d523fd1806c3d81c953797d35e 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.DecoderBlock.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.DecoderBlock.html @@ -173,7 +173,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.DecoderBlock"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">DecoderBlock</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#DecoderBlock"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.DecoderBlock" title="Permalink to this definition">¶</a></dt> -<dd><p>Block of a convolutional decoder.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.layers.Block.html#pysegcnn.core.layers.Block" title="pysegcnn.core.layers.Block"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.Block</span></code></a></p> +<p>Block of a convolutional decoder.</p> <dl class="py method"> <dt id="pysegcnn.core.layers.DecoderBlock.__init__"> <code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#DecoderBlock.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.DecoderBlock.__init__" title="Permalink to this definition">¶</a></dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.Encoder.html b/docs/_build/html/source/generated/pysegcnn.core.layers.Encoder.html index ebc77d2b75706b774a48d7e646c2ba557eed174b..4e34d6e18a2100d0e85915ddc7cfcd2110517cf0 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.Encoder.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.Encoder.html @@ -173,7 +173,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.Encoder"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">Encoder</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">filters</span></em>, <em class="sig-param"><span class="n">block</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#Encoder"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.Encoder" title="Permalink to this definition">¶</a></dt> -<dd><p>Generic convolutional encoder.</p> +<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p> +<p>Generic convolutional encoder.</p> <p>When instanciating an encoder-decoder architechure, <code class="docutils literal notranslate"><span class="pre">filters</span></code> should be the same for <a class="reference internal" href="#pysegcnn.core.layers.Encoder" title="pysegcnn.core.layers.Encoder"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.Encoder</span></code></a> and <a class="reference internal" href="pysegcnn.core.layers.Decoder.html#pysegcnn.core.layers.Decoder" title="pysegcnn.core.layers.Decoder"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.Decoder</span></code></a>.</p> diff --git a/docs/_build/html/source/generated/pysegcnn.core.layers.EncoderBlock.html b/docs/_build/html/source/generated/pysegcnn.core.layers.EncoderBlock.html index 8fb1f3d14550274f6d6d625211b6ced37438a236..2dba9f55284cf14f783fa5dc2edfedc3e468a2ab 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.layers.EncoderBlock.html +++ b/docs/_build/html/source/generated/pysegcnn.core.layers.EncoderBlock.html @@ -173,7 +173,8 @@ <dl class="py class"> <dt id="pysegcnn.core.layers.EncoderBlock"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.layers.</code><code class="sig-name descname">EncoderBlock</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#EncoderBlock"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.EncoderBlock" title="Permalink to this definition">¶</a></dt> -<dd><p>Block of a convolutional encoder.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.layers.Block.html#pysegcnn.core.layers.Block" title="pysegcnn.core.layers.Block"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.layers.Block</span></code></a></p> +<p>Block of a convolutional encoder.</p> <dl class="py method"> <dt id="pysegcnn.core.layers.EncoderBlock.__init__"> <code class="sig-name descname">__init__</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">out_channels</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/layers.html#EncoderBlock.__init__"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.layers.EncoderBlock.__init__" title="Permalink to this definition">¶</a></dt> diff --git a/docs/_build/html/source/generated/pysegcnn.core.models.Network.html b/docs/_build/html/source/generated/pysegcnn.core.models.Network.html index d5fb8006a7f6568df408341c98e6817d356a4dbf..116fd9f16b4ca102e20e159d7222cd280373f865 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.models.Network.html +++ b/docs/_build/html/source/generated/pysegcnn.core.models.Network.html @@ -171,7 +171,8 @@ <dl class="py class"> <dt id="pysegcnn.core.models.Network"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.models.</code><code class="sig-name descname">Network</code><a class="reference internal" href="../../_modules/pysegcnn/core/models.html#Network"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.models.Network" title="Permalink to this definition">¶</a></dt> -<dd><p>Generic Network class.</p> +<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p> +<p>Generic Network class.</p> <p>The base class for each model. If you want to implement a new model, inherit the <a class="reference internal" href="#pysegcnn.core.models.Network" title="pysegcnn.core.models.Network"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.models.Network</span></code></a> class.</p> <dl class="field-list"> diff --git a/docs/_build/html/source/generated/pysegcnn.core.models.UNet.html b/docs/_build/html/source/generated/pysegcnn.core.models.UNet.html index 2a81325512b299c21c9b09a50b54c815b6461aa9..6490dc8d22a00799312ea8ae1ddc2872ece567a0 100644 --- a/docs/_build/html/source/generated/pysegcnn.core.models.UNet.html +++ b/docs/_build/html/source/generated/pysegcnn.core.models.UNet.html @@ -170,7 +170,8 @@ <dl class="py class"> <dt id="pysegcnn.core.models.UNet"> <em class="property">class </em><code class="sig-prename descclassname">pysegcnn.core.models.</code><code class="sig-name descname">UNet</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">in_channels</span></em>, <em class="sig-param"><span class="n">nclasses</span></em>, <em class="sig-param"><span class="n">filters</span></em>, <em class="sig-param"><span class="n">skip</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/pysegcnn/core/models.html#UNet"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pysegcnn.core.models.UNet" title="Permalink to this definition">¶</a></dt> -<dd><p>A slightly modified implementation of <a class="reference external" href="https://arxiv.org/abs/1505.04597">U-Net</a> in PyTorch.</p> +<dd><p>Bases: <a class="reference internal" href="pysegcnn.core.models.Network.html#pysegcnn.core.models.Network" title="pysegcnn.core.models.Network"><code class="xref py py-class docutils literal notranslate"><span class="pre">pysegcnn.core.models.Network</span></code></a></p> +<p>A slightly modified implementation of <a class="reference external" href="https://arxiv.org/abs/1505.04597">U-Net</a> in PyTorch.</p> <div class="admonition important"> <p class="admonition-title">Important</p> <ul class="simple">