diff --git a/main/init.py b/main/init.py
deleted file mode 100755
index 503a2142d389d69a28f75dc841cf17b80645bf96..0000000000000000000000000000000000000000
--- a/main/init.py
+++ /dev/null
@@ -1,73 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Mon Jul  6 16:41:20 2020
-
-@author: Daniel
-"""
-# builtins
-import os
-import sys
-
-# externals
-import torch
-
-# append path to local files to the python search path
-sys.path.append('..')
-
-# local modules
-from pytorch.dataset import SparcsDataset, Cloud95Dataset
-from pytorch.trainer import NetworkTrainer
-from pytorch.models import SegNet
-from main.config import (dataset_name, dataset_path, bands, tile_size, tvratio,
-                         filters, skip_connection, kwargs, loss_function,
-                         optimizer, lr, ttratio, batch_size, seed, patches)
-
-# check which dataset the model is trained on
-if dataset_name == 'Sparcs':
-    # instanciate the SparcsDataset
-    dataset = SparcsDataset(dataset_path, use_bands=bands, tile_size=tile_size)
-elif dataset_name == 'Cloud95':
-    dataset = Cloud95Dataset(dataset_path, use_bands=bands,
-                             tile_size=tile_size, exclude=patches)
-else:
-    raise ValueError('{} is not a valid dataset. Available datasets are '
-                     '"Sparcs" and "Cloud95".'.format(dataset_name))
-
-# print the bands used for the segmentation
-print('------------------------ Input bands -----------------------------')
-print(*['Band {}: {}'.format(i, b) for i, b in
-        enumerate(dataset.use_bands)], sep='\n')
-print('------------------------------------------------------------------')
-
-# print the classes of interest
-print('-------------------------- Classes -------------------------------')
-print(*['Class {}: {}'.format(k, v['label']) for k, v in
-        dataset.labels.items()], sep='\n')
-print('------------------------------------------------------------------')
-
-# instanciate the segmentation network
-print('------------------- Network architecture -------------------------')
-net = SegNet(in_channels=len(dataset.use_bands),
-             nclasses=len(dataset.labels),
-             filters=filters,
-             skip=skip_connection,
-             **kwargs)
-print(net)
-print('------------------------------------------------------------------')
-
-# instanciate the optimizer
-optimizer = optimizer(net.parameters(), lr)
-
-# file to save model state to
-# format: networkname_datasetname_t(tilesize)_b(batchsize)_bands.pt
-bformat = ''.join([b[0] for b in bands]) if bands else 'all'
-state_file = '{}_{}_t{}_b{}_{}.pt'.format(net.__class__.__name__,
-                                          dataset.__class__.__name__,
-                                          tile_size, batch_size, bformat)
-
-# instanciate NetworkTrainer class
-print('------------------------ Dataset split ---------------------------')
-trainer = NetworkTrainer(net, dataset, loss_function, optimizer,
-                         batch_size=batch_size, tvratio=tvratio,
-                         ttratio=ttratio, seed=seed)
-print('------------------------------------------------------------------')