Newer
Older
from collections import Counter
from itertools import product
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple
import geopandas as gpd
import numpy as np
import pandas as pd
from hdbscan import HDBSCAN
from joblib import Parallel, delayed
from sklearn import ensemble as ens
from sklearn.metrics import (
calinski_harabasz_score,
davies_bouldin_score,
silhouette_score,
)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from tqdm import tqdm
from justclust.hopkins import hopkins
# %%
## DEFINE MODELS AD ALGORITHMS
def get_algclusters(preprocs=None):
# define the cluster algorithm to use/test
models = {
# "KMEANS": {
# "cls": clu.KMeans,
# "opts": [
# dict(
# n_clusters=k,
# n_init=20,
# max_iter=600,
# random_state=23,
# ordered_feature_names=selected.columns,
# feature_importance_method="wcss_min",
# )
# for k in range(2, 25)
# ],
# "pre-processing": [
# # PowerTransformer(), # using it_ hopkins is reduced to 0.6884 from 0.9273
# pre.RobustScaler(
# with_centering=True,
# with_scaling=True,
# quantile_range=(20, 80),
# ),
# apply_weight,
# dec.DictionaryLearning(fit_algorithm="cd", alpha=0.1, n_jobs=-1),
# ],
# "label": lambda x: (f"kmeans__k-{x['n_clusters']:02d}"),
# "title": lambda x: (f"KMeans: k: {x['n_clusters']:2d} "),
# },
# "DBSCAN": {
# "cls": clu.DBSCAN,
# "opts": [
# {"eps": eps, "min_samples": ms}
# for eps, ms in product(
# (0.1, 0.25, 0.5, 0.75, 0.9), (1, 3, 5, 10, 15, 20)
# )
# ],
# "pre-processing": [
# pre.RobustScaler(
# with_centering=True,
# with_scaling=True,
# quantile_range=quantile_range,
# ),
# apply_weight,
# dec.DictionaryLearning(fit_algorithm="cd", alpha=0.1, n_jobs=-1),
# ],
# "label": lambda x: (
# f"dbscan__eps-{x['eps']:3.2f}_"
# f"ms-{x['min_samples'] if x['min_samples'] else 0:02d}"
# ),
# "title": lambda x: (
# f"DBSCAN: eps: {x['eps']:3.1f} " f"min_samples: {x['min_samples']}"
# ),
# },
"HDBSCAN": {
"cls": HDBSCAN,
"opts": [
{
"min_cluster_size": mcs,
"min_samples": ms,
"metric": mtr,
"p": 0.01 if mtr == "minkowski" else None,
"cluster_selection_method": csm,
}
for mcs, ms, mtr, csm in product(
[2, 3, 5, 7, 10, 12, 15], # min_cluster_size
[None, 1, 2, 3, 5], # min_samples
[
"euclidean",
# "haversine", # only 2D
"cityblock",
# "cosine",
"l1",
"l2",
"manhattan",
"braycurtis",
"canberra",
"chebyshev",
"correlation",
# "dice", # only boolean vectors
# "hamming", # only boolean vectors
# "jaccard", # only boolean vectors
# "kulsinski", # only boolean vectors
# "mahalanobis", # Must provide either V or VI for Mahalanobis distance
"minkowski",
# "rogerstanimoto", # only boolean vectors
# "russellrao", # only boolean vectors
# "seuclidean",
# "sokalmichener", # only boolean vectors
# "sokalsneath", # only boolean vectors
"sqeuclidean",
# "yule", # only boolean vectors
], # metric
["eom", "leaf"], # cluster_selection_method
)
],
"pre-processing": preprocs if preprocs is not None else [],
"label": lambda x: (
f"hdbscan__mcs-{x['min_cluster_size']:02d}_"
f"ms-{x['min_samples'] if x['min_samples'] else 0:02d}_"
f"m-{x['metric']}_"
f"csm-{x['cluster_selection_method']}"
),
"title": lambda x: (
f"Scaled/Weighted HDBSCAN: min_cluster_size: {x['min_cluster_size']} "
f"min_samples: {x['min_samples']}"
f"metric: {x['metric']}"
f"csm: {x['cluster_selection_method']}"
),
},
# "BIRCH": {
# "cls": clu.Birch,
# "opts": [
# dict(
# threshold=thr,
# branching_factor=bf,
# n_clusters=None,
# )
# for thr, bf, k in product(
# (0.1, 0.25, 0.5, 0.75, 0.9, 1.15, 1.5),
# (25, 50, 100),
# (None, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25),
# )
# ],
# "pre-processing": [
# pre.RobustScaler(
# with_centering=True,
# with_scaling=True,
# quantile_range=quantile_range,
# ),
# apply_weight,
# dec.DictionaryLearning(fit_algorithm="cd", alpha=0.1, n_jobs=-1),
# ],
# "label": lambda x: (
# f"birch__t-{x['threshold']:4.2f}_"
# f"b-{x['branching_factor']}_"
# f"k-{x['n_clusters']}"
# ),
# "title": lambda x: (
# f"Birch t: {x['threshold']:4.2f} "
# f"b: {x['branching_factor']} "
# f"k: {x['n_clusters']}"
# ),
# },
}
return models
# %%
# Explore clustering algorithms
def feature_importances(
data: pd.DataFrame, labels: List[int], label: str, clf: Callable = None
) -> pd.DataFrame:
"""Compute feature importance.
_extended_summary_
Parameters
----------
data : pd.DataFrame
DataFrame with the transformed data used for clustering
labels : List[int]
Label with the assignd cluster for each element in the data
label : str
name of the column that will be added in the returned DataFrame
clf: Callable
Instance with the `fit` method that compute a
`feature_importances_` attribute, if not defined by the user
the RandomForestClassifier is used.
Returns
-------
pd.DataFrame
DataFrame with the feature importances computed
"""
if clf is None:
clf = ens.RandomForestClassifier(max_depth=10, n_estimators=500, random_state=1)
clf.fit(data.values, labels)
return pd.DataFrame(
clf.feature_importances_,
index=pd.Series(data.columns, name="features"),
columns=[
label,
],
).sort_values(label, ascending=False)
def compute_metrics(
model, data: pd.DataFrame, labels: np.array, alpha_k: float = 0.02
) -> Tuple[
int,
Optional[float],
Optional[float],
Optional[float],
Optional[float],
Optional[float],
]:
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
k = len(set(labels)) - 1
# avoid to compute metrics for outliers, rm: -1
valid = labels >= 0
labels = labels[valid]
data = data.loc[valid, :]
if hasattr(model, "inertia_"):
inertia_o = np.square((data.values - data.values.mean(axis=0))).sum()
inertia = model.inertia_
scaledi = inertia / inertia_o + alpha_k * k
else:
inertia_o = None
inertia = None
scaledi = None
if k <= (len(labels) - 1) and k >= 2:
# Number of labels is 1. Valid values are 2 to n_samples - 1
sil = silhouette_score(data, labels)
dvb = davies_bouldin_score(data, labels)
cal = calinski_harabasz_score(data, labels)
return k, inertia, scaledi, sil, dvb, cal
return k, inertia, scaledi, None, None, None
def exec_model(
model: Dict[str, Any], opts: Dict[str, Any], data: pd.DataFrame
) -> Tuple[Any, List[int]]:
"""Execute the single model to the data
Parameters
----------
model : Dict[str, Any]
Dictionary containing a `cls` key with the class
of the cluster algorithm that need to be applied;
Optional key is `post-processing` that contain a
list of callable instances taking as input
parameters:
* the algorithm cluster instance
* the transformed data as pd DataFrame
* the cluster labels as List[int]
that are applied after the execution of the
clustering process.
opts : Dict[str, Any]
Arguments to be used to instantiate the cluster
algorithm `model["cls"](**opts)`.
data : pd.DataFrame
DataFrame with the transformed data to be used
through the `fit_predict` method of the model
instance.
Returns
-------
Tuple[Any, List[int]]
_description_
"""
# apply the model
clst = model["cls"](**opts)
labels = clst.fit_predict(data)
# apply all the post-processing actions
for post in model.get("post-processing", []):
post(clst, data, labels)
return clst, labels
def cls_counter(labels: List[int]) -> Tuple[pd.DataFrame, float]:
"""Count the number of clusters found
Parameters
----------
labels : List[int]
List containing the cluster labels assigned to each
element. Negative value are classified as outliers
or not belonging to any cluster.
Returns
-------
Tuple[pd.DataFrame, float]
* DataFrame with the number of statistical units count
* the float with the percentage of number of units that
have been assigned to a cluster.
"""
clcount = pd.DataFrame(Counter(labels).most_common(), columns=["cluster", "count"])
tot = clcount["count"].sum()
clcount["%"] = clcount["count"].astype(float) * 100.0 / tot
perc = clcount.loc[clcount["cluster"] >= 0, "%"].sum()
clcount.sort_values(by="%", ascending=False, inplace=True)
if round(perc, 2) > 100.0:
print("#" * 60)
print(f"WARNING: percentage > 100%: {perc!r}")
print(clcount)
print("#" * 60)
return clcount, perc
def model_worker(
mname: str,
model: Dict[str, Any],
opts: Dict[str, Any],
tdata: pd.DataFrame,
rdir: Path = None,
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
) -> Tuple[str, str, List[Any], pd.DataFrame]:
"""Excute the single model and compute the main scores
Parameters
----------
mname : str
Name of the algorithm in use.
model : Dict[str, Any]
Dictionary with the main options and parameters
opts : Dict[str, Any]
Dictionary with the parameters to be used by the model
tdata : pd.DataFrame
Transformed and balanced data, ready to be used as input
for the clustering task.
Returns
-------
Tuple[str, List[int], List[Any], pd.DataFrame]
* the first value is the string that is used as column name
* the result of the cluster with the assigned labels for
each row of the transformed-data
* list containing the scores and main features of the cluster
* DataFrame containing the feature importance of each cluster
"""
label = model["label"](opts)
clst, labels = exec_model(model, opts, tdata)
score = compute_metrics(clst, tdata, labels, alpha_k=0.02)
clcount, perc = cls_counter(labels)
if score[0] > 1:
n_of_cls1 = (clcount["count"] == 1).sum()
mean_el_per_cl = clcount.loc[0:, "count"].mean()
std_el_per_cl = clcount.loc[0:, "count"].std()
else:
n_of_cls1 = None
mean_el_per_cl = None
std_el_per_cl = None
long_label = f"k{len(clcount):03d}_perc{perc:05.1f}_{label}"
xcores = [
mname,
label,
long_label,
perc,
n_of_cls1,
mean_el_per_cl,
std_el_per_cl,
] + [s for s in score]
if rdir is not None:
clcount.to_excel(rdir / f"{long_label}.xlsx")
fimp = feature_importances(tdata, labels, label)
return label, labels, xcores, fimp
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def apply_filter(
sd: Dict[str, int | float], filters: List[Tuple[str, Tuple[float, float]]]
) -> List[bool]:
"""Check conditions to a dictionary. Return a list of booleans for each condition.
Parameters
----------
sd : Dict[str, int | float]
Dictionary with the values to be filtered
filters : List[Tuple[str, Tuple[float, float]]]
List of rules and checked to be verified
Returns
-------
List[bool]
List of booleans with the condition that are satisfied
Examples
--------
>>> apply_filter(
... dict(a=10, b=50, c=100),
... [
... ("a", (5, None)),
... ("b", (40, 60)),
... ("c", (None, 100)),
... ]
... )
[True, True, True]
>>> apply_filter(
... dict(a=10, b=50, c=100),
... [
... ("a", (15, None)),
... ("b", (60, 80)),
... ("c", (None, 90)),
... ]
... )
[False, Flase, False]
>>> apply_filter(
... dict(a=None, b=50, c=100),
... [
... ("a", (15, None)),
... ("b", (60, 80)),
... ("c", (None, 90)),
... ]
... )
[False, Flase, False]
"""
appends = []
for fname, (fmin, fmax) in filters:
val = sd[fname]
if val is None:
val = np.nan
if fmin is not None:
# fmin is defined check min value
if val >= fmin:
if fmax is not None:
# fmax is defined check max value
if val <= fmax:
appends.append(True)
else:
appends.append(False)
else:
# ignore max value
appends.append(True)
else:
# fmin value condition not correct
appends.append(False)
else:
# fmin not defined
if fmax is not None:
# fmax is defined
if val <= fmax:
# fmax is valid
appends.append(True)
else:
appends.append(False)
else:
# fmax is not defined
appends.append(True)
return appends
def explore_models(
data: pd.DataFrame,
cldf: gpd.GeoDataFrame,
rdir: Path,
models: Dict[str, Dict[str, Any]] = None,
filters: List[Tuple[str, Tuple[float, float]]] = None,
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
n_jobs: int = -1,
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Execute all the models and save the labels' result
to a dedicated GeoDataFrame.
Parameters
----------
data : pd.DataFrame
Data to be used for the clustering, is a DataFrame with
the selected features.
cldf : gpd.GeoDataFrame
For each model a new column is added to this GeoDataFrame
rdir : Path
Directory containing all the outputs: figures, tables and
geo-files
models : Dict[str, Dict[str, Any]]
A dictionary of dicionary with all the cluster algorithms
and that will be executed
n_jobs: int, default: -1
Number of parallel jobs to be used to explore the
algorithms. A negative value mean that all the cores
available will be used.
Returns
-------
* the DataFrame with the main score and characteristics
of the clusters
* the DataFrame with the feature importance
"""
if models is None:
models = MODELS
num_opts = sum(len(m["opts"]) for m in models.values())
print(
f"Exploring the cluster space with {len(models)} "
f"models and {num_opts} tasks"
)
# compute Hopkins per pre-processing chain per model
# A statistical test which allow to guess if the data
# follow an uniform distribution. If the test is positve
# (an hopkins score which tends to 0) it means that the
# data is not uniformly distributed. Hence clustering
# can be useful to classify the observations. However,
# if the score is too high (above 0.3 for exemple);
# the data is uniformly distributed and clustering can’t
# be really useful for the problem at hand.
trans = {}
for mname, model in models.items():
tdata = data.copy()
# apply all the transformations
for pre in model.get("pre-processing", []):
tdata = pre.fit_transform(tdata)
# avoit to pre-process the data for every attempt
trans[mname] = tdata
# compute Hopkins statistics to test the clusterability of the daset
hop = hopkins(tdata, sampling_size=150)
print(f"{mname}, Hopkins: {hop:.5f}")
# print_hopkins(mname, hopkins)
pll = Parallel(n_jobs=n_jobs, verbose=0)
tasks = [
(
mname,
model,
opts,
pd.DataFrame(trans[mname], index=data.index, columns=data.columns),
)
for mname, model in models.items()
for opts in model["opts"]
]
res = pll(
delayed(model_worker)(mname, model, opts, df)
for mname, model, opts, df in tqdm(tasks)
)
cols = [
"model",
"label",
"long_label",
"% covered by clusters",
"n_of_cl1",
"mean_el_per_cl",
"std_el_per_cl",
"n_clusters",
"inertia",
"scaled_inertia",
"silhouette",
"davies bouldin",
"calinski harabasz",
]
scores, fimps, sels = [], [], []
for long_label, labels, xcores, fimp in res:
if filters is not None:
sd = {k: v for k, v in zip(cols, xcores)}
appends = apply_filter(sd, filters)
else:
# skip filters
appends = [
True,
]
# save results
scores.append(xcores)
fimps.append(fimp)
# check conditions to save it in the vector layer only
# when filter conditions are satisfied
if all(appends):
cldf.loc[data.index, long_label] = labels
sels.append(True)
else:
sels.append(False)
sc = pd.DataFrame(
scores,
columns=cols,
sc["selected"] = sels
fi = pd.concat(fimps, axis=1)
return sc, fi