Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "fde8874d-299f-4f48-a10a-9fb6a00b43b9",
"metadata": {},
"source": [
"# Evaluate bootstrapped model results"
]
},
{
"cell_type": "markdown",
"id": "969d063b-5262-4324-901f-0a48630c4f27",
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8af00ae4-4aeb-4ff8-a46a-65966b28c440",
"metadata": {},
"outputs": [],
"source": [
"# builtins\n",
"import pathlib\n",
"\n",
"# externals\n",
"import numpy as np\n",
"import xarray as xr\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"# locals\n",
"from climax.main.io import OBS_PATH, ERA5_PATH\n",
"from climax.main.config import VALID_PERIOD\n",
"from pysegcnn.core.utils import search_files"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5bc74835-dc59-46ed-849b-3ff614e53eee",
"metadata": {},
"outputs": [],
"source": [
"# mapping from predictands to variable names\n",
"NAMES = {'tasmin': 'minimum temperature', 'tasmax': 'maximum temperature', 'pr': 'precipitation'}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8a63ef3-35ef-4ffa-b1f3-5c2986eb7eb1",
"metadata": {},
"outputs": [],
"source": [
"# path to bootstrapped model results\n",
"RESULTS = pathlib.Path('/mnt/CEPH_PROJECTS/FACT_CLIMAX/ERA5_PRED/bootstrap')"
]
},
{
"cell_type": "markdown",
"id": "7eae545b-4d8a-4689-a6c0-4aba2cb9104e",
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# predictand to evaluate\n",
"PREDICTAND = 'tasmin'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3e856f80-14fd-405f-a44e-cc77863f8e5b",
"metadata": {},
"outputs": [],
"source": [
"# loss function and optimizer\n",
"LOSS = ['L1Loss', 'MSELoss', 'BernoulliGammaLoss'] if PREDICTAND == 'pr' else ['L1Loss', 'MSELoss']\n",
"OPTIM = 'Adam'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "011b792d-7349-44ad-997d-11f236472a11",
"metadata": {},
"outputs": [],
"source": [
"# model to evaluate\n",
"models = ['USegNet_{}_ztuvq_500_850_p_dem_doy_1mm_{}_{}'.format(PREDICTAND, loss, OPTIM) if loss == 'BernoulliGammaLoss' else\n",
" 'USegNet_{}_ztuvq_500_850_p_dem_doy_{}_{}'.format(PREDICTAND, loss, OPTIM) for loss in LOSS]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc4ca6f0-5490-4522-8661-e36bd1be11b7",
"metadata": {},
"outputs": [],
"source": [
"# get bootstrapped models\n",
"models = {loss: sorted(search_files(RESULTS.joinpath(PREDICTAND), model + '(.*).nc$'),\n",
" key=lambda x: int(x.stem.split('_')[-1])) for loss, model in zip(LOSS, models)}\n",
"models"
]
},
{
"cell_type": "markdown",
"id": "5a64795a-6e5c-409a-8b3b-c738a96fa255",
"metadata": {
"tags": []
},
"source": [
"## Load datasets"
]
},
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
{
"cell_type": "markdown",
"id": "e790ed9f-451c-4368-849d-06d9c50f797c",
"metadata": {},
"source": [
"### Load observations"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0862e0c8-06df-45d6-bc1b-002ffb6e9915",
"metadata": {},
"outputs": [],
"source": [
"# load observations\n",
"y_true = xr.open_dataset(OBS_PATH.joinpath(PREDICTAND, 'OBS_{}_1980_2018.nc'.format(PREDICTAND)),\n",
" chunks={'time': 365})\n",
"y_true = y_true.sel(time=VALID_PERIOD) # subset to time period covered by predictions\n",
"y_true = y_true.rename({NAMES[PREDICTAND]: PREDICTAND}) if PREDICTAND == 'pr' else y_true"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aba38642-85d1-404a-81f3-65d23985fb7a",
"metadata": {},
"outputs": [],
"source": [
"# mask of missing values\n",
"missing = np.isnan(y_true[PREDICTAND])"
]
},
{
"cell_type": "markdown",
"id": "d4512ed2-d503-4bc1-ae76-84560c101a14",
"metadata": {},
"source": [
"### Load reference data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f90f6abf-5fd6-49c0-a1ad-f62242b3d3a0",
"metadata": {},
"outputs": [],
"source": [
"# ERA-5 reference dataset\n",
"if PREDICTAND == 'pr':\n",
" y_refe = xr.open_dataset(search_files(ERA5_PATH.joinpath('ERA5', 'total_precipitation'), '.nc$').pop(),\n",
" chunks={'time': 365})\n",
" y_refe = y_refe.rename({'tp': 'pr'})\n",
"else:\n",
" y_refe = xr.open_dataset(search_files(ERA5_PATH.joinpath('ERA5', '2m_{}_temperature'.format(PREDICTAND.lstrip('tas'))), '.nc$').pop(),\n",
" chunks={'time': 365})\n",
" y_refe = y_refe - 273.15 # convert to °C\n",
" y_refe = y_refe.rename({'t2m': PREDICTAND})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea6d5f56-4f39-4e9a-976d-00ff28fce95c",
"metadata": {},
"outputs": [],
"source": [
"# subset to time period covered by predictions\n",
"y_refe = y_refe.sel(time=VALID_PERIOD).drop_vars('lambert_azimuthal_equal_area')\n",
"y_refe = y_refe.transpose('time', 'y', 'x') # change order of dimensions"
]
},
{
"cell_type": "markdown",
"id": "d37702de-da5f-4306-acc1-e569471c1f12",
"metadata": {},
"source": [
"### Load QM-adjusted reference data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fffbd267-d08b-44f4-869c-7056c4f19c28",
"metadata": {},
"outputs": [],
"source": [
"y_refe_qm = xr.open_dataset(ERA5_PATH.joinpath('QM_ERA5_{}_day_19912010.nc'.format(PREDICTAND)), chunks={'time': 365})\n",
"y_refe_qm = y_refe_qm.transpose('time', 'y', 'x') # change order of dimensions"
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16fa580e-27a7-4758-9164-7f607df7179d",
"metadata": {},
"outputs": [],
"source": [
"# center hours at 00:00:00 rather than 12:00:00\n",
"y_refe_qm['time'] = np.asarray([t.astype('datetime64[D]') for t in y_refe_qm.time.values])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6789791f-006b-49b3-aa04-34e4ed8e1571",
"metadata": {},
"outputs": [],
"source": [
"# subset to time period covered by predictions\n",
"y_refe_qm = y_refe_qm.sel(time=VALID_PERIOD).drop_vars('lambert_azimuthal_equal_area')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b51cfb3f-caa8-413e-a12d-47bbafcef1df",
"metadata": {},
"outputs": [],
"source": [
"# align datasets and mask missing values\n",
"y_true, y_refe, y_refe_qm = xr.align(y_true[PREDICTAND], y_refe[PREDICTAND], y_refe_qm[PREDICTAND], join='override')\n",
"y_refe = y_refe.where(~missing, other=np.nan)\n",
"y_refe_qm = y_refe_qm.where(~missing, other=np.nan)"
]
},
{
"cell_type": "markdown",
"id": "b4a6c286-6b88-487d-866c-3cb633686dac",
"metadata": {},
"source": [
"### Load model predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_pred_raw = {k: [xr.open_dataset(v, chunks={'time': 365}) for v in models[k]] for k in models.keys()}\n",
"if PREDICTAND == 'pr':\n",
" y_pred_raw = {k: [v.rename({NAMES[PREDICTAND]: PREDICTAND}) for v in y_pred_raw[k]] for k in y_pred_raw.keys()}\n",
" y_pred_raw = {k: [v.transpose('time', 'y', 'x') for v in y_pred_raw[k]] for k in y_pred_raw.keys()}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# align datasets and mask missing values\n",
"y_prob = {}\n",
"y_pred = {}\n",
"for loss, models in y_pred_raw.items():\n",
" y_pred[loss], y_prob[loss] = [], []\n",
" for y_p in models:\n",
" # check whether evaluating precipitation or temperatures\n",
" if len(y_p.data_vars) > 1:\n",
" _, _, y_p, y_p_prob = xr.align(y_true, y_refe, y_p[PREDICTAND], y_p.prob, join='override')\n",
" y_p_prob = y_p_prob.where(~missing, other=np.nan) # mask missing values\n",
" y_prob[loss].append(y_p_prob)\n",
" else:\n",
" _, _, y_p = xr.align(y_true, y_refe, y_p[PREDICTAND], join='override')\n",
"\n",
" # mask missing values\n",
" y_p = y_p.where(~missing, other=np.nan)\n",
" y_pred[loss].append(y_p)"
{
"cell_type": "markdown",
"id": "6a718ea3-54d3-400a-8c89-76d04347de2d",
"metadata": {
"tags": []
},
"source": [
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a6c0bfe-c1d2-4e43-9f8e-35c63c46bb10",
"metadata": {},
"outputs": [],
"source": [
"ensemble = {k: xr.Dataset({'Member-{}'.format(i): member for i, member in enumerate(y_pred[k])}).to_array('members')\n",
" for k in y_pred.keys() if y_pred[k]}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e526227-cd4c-4a1c-ab72-51b72a4f821f",
"metadata": {},
"outputs": [],
"source": [
"# full ensemble mean prediction and standard deviation\n",
"ensemble_mean_full = {k: v.mean(dim='members') for k, v in ensemble.items()}\n",
"ensemble_std_full = {k: v.std(dim='members') for k, v in ensemble.items()}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4a70701-2823-4106-ad6a-3272b678d0f9",
"metadata": {},
"outputs": [],
"source": [
"# ensemble mean prediction using three random members\n",
"ensemble_3 = np.random.randint(0, len(ensemble['L1Loss'].members), size=3)\n",
"ensemble_mean_3 = {k: v[ensemble_3, ...].mean(dim='members') for k, v in ensemble.items()}\n",
"ensemble_std_3 = {k: v[ensemble_3, ...].std(dim='members') for k, v in ensemble.items()}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4d18814-1340-4ed4-8102-2ccd6f0c2664",
"metadata": {},
"outputs": [],
"source": [
"# ensemble mean prediction using five random members\n",
"ensemble_5 = np.random.randint(0, len(ensemble['L1Loss'].members), size=5)\n",
"ensemble_mean_5 = {k: v[ensemble_5, ...].mean(dim='members') for k, v in ensemble.items()}\n",
"ensemble_std_5 = {k: v[ensemble_5, ...].std(dim='members') for k, v in ensemble.items()}"
]
},
{
"cell_type": "markdown",
"id": "f8b31e39-d4b9-4347-953f-87af04c0dd7a",
"metadata": {
"tags": []
},
"source": [
]
},
{
"cell_type": "markdown",
"id": "3e6ecc98-f32f-42f7-9971-64b270aa5453",
"metadata": {
"tags": []
},
]
},
{
"cell_type": "markdown",
"id": "671cd3c0-8d6c-41c1-bf8e-93f5943bf9aa",
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"metadata": {},
"source": [
"Calculate yearly average bias, MAE, and RMSE over entire reference period for model predictions, ERA-5, and QM-adjusted ERA-5."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7939a4d2-4eff-4507-86f8-dba7c0b635df",
"metadata": {},
"outputs": [],
"source": [
"# yearly average values over validation period\n",
"y_refe_yearly_avg = y_refe.groupby('time.year').mean(dim='time')\n",
"y_refe_qm_yearly_avg = y_refe_qm.groupby('time.year').mean(dim='time')\n",
"y_true_yearly_avg = y_true.groupby('time.year').mean(dim='time')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64e29db7-998d-4952-84b0-1c79016ab9a9",
"metadata": {},
"outputs": [],
"source": [
"# yearly average bias, mae, and rmse for ERA-5\n",
"bias_refe = y_refe_yearly_avg - y_true_yearly_avg\n",
"mae_refe = np.abs(y_refe_yearly_avg - y_true_yearly_avg)\n",
"rmse_refe = (y_refe_yearly_avg - y_true_yearly_avg) ** 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d0d4c974-876f-45e6-85cc-df91501ead20",
"metadata": {},
"outputs": [],
"source": [
"# yearly average bias, mae, and rmse for QM-Adjusted ERA-5\n",
"bias_refe_qm = y_refe_qm_yearly_avg - y_true_yearly_avg\n",
"mae_refe_qm = np.abs(y_refe_qm_yearly_avg - y_true_yearly_avg)\n",
"rmse_refe_qm = (y_refe_qm_yearly_avg - y_true_yearly_avg) ** 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6efe5b9-3a6d-41ea-9f26-295b167cf0af",
"metadata": {},
"outputs": [],
"source": [
"# compute validation metrics for reference datasets\n",
"filename = RESULTS.joinpath(PREDICTAND, 'reference.csv')\n",
"if filename.exists():\n",
" # check if validation metrics for reference already exist\n",
" df_ref = pd.read_csv(filename)\n",
"else:\n",
" # compute validation metrics\n",
" df_ref = pd.DataFrame([], columns=['bias', 'mae', 'rmse', 'product'])\n",
" for product, metrics in zip(['Era-5', 'Era-5 QM'], [[bias_refe, mae_refe, rmse_refe], [bias_refe_qm, mae_refe_qm, rmse_refe_qm]]):\n",
" values = pd.DataFrame([[np.sqrt(m.mean().values.item()) if name == 'rmse' else m.mean().values.item() for\n",
" name, m in zip(['bias', 'mae', 'rmse'], metrics)] + [product]], columns=df_ref.columns)\n",
" df_ref = df_ref.append(values, ignore_index=True)\n",
" \n",
" # save metrics to disk\n",
" df_ref.to_csv(filename, index=False)"
]
},
{
"cell_type": "markdown",
"id": "258cb3c6-c2fc-457d-885e-28eaf48f1d5b",
"metadata": {
"tags": []
},
"source": [
"## Bias, MAE, and RMSE for model predictions"
]
},
{
"cell_type": "markdown",
"Calculate yearly average bias, MAE, and RMSE over entire reference period for model predictions."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6980833a-3848-43ca-bcca-d759b4fd9f69",
"metadata": {},
"outputs": [],
"source": [
"# yearly average bias, mae, and rmse for each ensemble member\n",
"y_pred_yearly_avg = {k: v.groupby('time.year').mean(dim='time') for k, v in ensemble.items()}\n",
"bias_pred = {k: v - y_true_yearly_avg for k, v in y_pred_yearly_avg.items()}\n",
"mae_pred = {k: np.abs(v - y_true_yearly_avg) for k, v in y_pred_yearly_avg.items()}\n",
"rmse_pred = {k: (v - y_true_yearly_avg) ** 2 for k, v in y_pred_yearly_avg.items()}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64f7a0b9-a772-4a03-9160-7839a48e56cd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"# compute validation metrics for model predictions\n",
"filename = RESULTS.joinpath(PREDICTAND, 'prediction.csv')\n",
"if filename.exists():\n",
" # check if validation metrics for predictions already exist\n",
" df_pred = pd.read_csv(filename)\n",
"else:\n",
" # validation metrics for each ensemble member\n",
" df_pred = pd.DataFrame([], columns=['bias', 'mae', 'rmse', 'product', 'loss'])\n",
" for k in y_pred_yearly_avg.keys():\n",
" for i in range(len(bias_pred[k])):\n",
" values = pd.DataFrame([[np.sqrt(m.mean().values.item()) if name == 'rmse' else m.mean().values.item()\n",
" for name, m in zip(['bias', 'mae', 'rmse'], [bias_pred[k][i], mae_pred[k][i], rmse_pred[k][i]])] +\n",
" [bias_pred[k][i].members.item()] + [k]],\n",
" columns=df_pred.columns)\n",
" df_pred = df_pred.append(values, ignore_index=True)\n",
" \n",
" # validation metrics for ensembles\n",
" for name, ens in zip(['Ensemble-3', 'Ensemble-5', 'Ensemble-{:d}'.format(len(ensemble['L1Loss']))],\n",
" [ensemble_mean_3, ensemble_mean_5, ensemble_mean_full]):\n",
" for k, v in ens.items():\n",
" yearly_avg = v.groupby('time.year').mean(dim='time')\n",
" bias = (yearly_avg - y_true_yearly_avg).mean().values.item()\n",
" mae = np.abs(yearly_avg - y_true_yearly_avg).mean().values.item()\n",
" rmse = np.sqrt(((yearly_avg - y_true_yearly_avg) ** 2).mean().values.item())\n",
" values = pd.DataFrame([[bias, mae, rmse, name, k]], columns=df_pred.columns)\n",
" df_pred = df_pred.append(values, ignore_index=True)\n",
" \n",
" # save metrics to disk\n",
" df_pred.to_csv(filename, index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# create a sequential colormap: for reference data, single ensemble members, and ensemble mean predictions\n",
"# palette = sns.color_palette('YlOrRd_r', 10) + sns.color_palette('Greens', 3)\n",
"palette = sns.color_palette('Blues', len(LOSS))"
"id": "3cfcd2de-cd37-42d5-b53d-e8abfd21e242",
"metadata": {
"tags": []
},
"### Absolute values: single members vs. ensemble"
"cell_type": "code",
"execution_count": null,
"id": "48751f7f-9c26-471d-a75e-b7bb2fcb71be",
"# dataframe of single members and ensembles only\n",
"members = df_pred[~np.isin(df_pred['product'], ['Ensemble-{}'.format(i) for i in [3, 5, 10]])]\n",
"ensemble = df_pred[~np.isin(df_pred['product'], ['Member-{}'.format(i) for i in range(10)])]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
"# initialize figure\n",
"fig = plt.figure(figsize=(16, 5))\n",
"\n",
"# create grid for different subplots\n",
"grid = gridspec.GridSpec(ncols=5, nrows=1, width_ratios=[3, 1, 1, 3, 1], wspace=0.05, hspace=0)\n",
"\n",
"# add subplots\n",
"ax1 = fig.add_subplot(grid[0])\n",
"ax2 = fig.add_subplot(grid[1], sharey=ax1)\n",
"ax3 = fig.add_subplot(grid[3])\n",
"ax4 = fig.add_subplot(grid[4], sharey=ax3)\n",
"axes = [ax1, ax2, ax3, ax4]\n",
"\n",
"# plot bias: single members vs. ensemble\n",
"sns.barplot(x='product', y='bias', hue='loss', data=members, palette=palette, ax=ax1);\n",
"sns.barplot(x='product', y='bias', hue='loss', data=ensemble, palette=palette, ax=ax2);\n",
"\n",
"# plot mae: single members vs. ensemble\n",
"sns.barplot(x='product', y='mae', hue='loss', data=members, palette=palette, ax=ax3);\n",
"sns.barplot(x='product', y='mae', hue='loss', data=ensemble, palette=palette, ax=ax4);\n",
"\n",
"# axes limits and ticks\n",
"y_lim_bias = (-50, 50) if PREDICTAND == 'pr' else (-1, 1)\n",
"y_lim_mae = (0, 2) if PREDICTAND == 'pr' else (0, 1)\n",
"y_ticks_bias = (np.arange(y_lim_bias[0], y_lim_bias[1] + 10, 10) if PREDICTAND == 'pr' else\n",
" np.arange(y_lim_bias[0], y_lim_bias[1] + 0.2, 0.2))\n",
"y_ticks_mae = (np.arange(y_lim_mae[0], y_lim_mae[1] + 10, 10) if PREDICTAND == 'pr' else\n",
" np.arange(y_lim_mae[0], y_lim_mae[1] + 0.2, 0.2))\n",
"\n",
"# axis for bias\n",
"ax1.set_ylabel('Bias (%)' if PREDICTAND == 'pr' else 'Bias (°C)')\n",
"ax1.set_ylim(y_lim_bias)\n",
"ax1.set_yticks(y_ticks_bias)\n",
"\n",
"# axis for mae\n",
"ax3.set_ylabel('Mean absolute error (mm)' if PREDICTAND == 'pr' else 'Mean absolute error (°C)')\n",
"ax3.set_ylim(y_lim_mae)\n",
"ax3.set_yticks(y_ticks_mae)\n",
"\n",
"# adjust axis for ensemble predictions\n",
"for ax in [ax2, ax4]:\n",
" ax.yaxis.tick_right()\n",
" ax.set_ylabel('')\n",
"\n",
"# axis fontsize and legend\n",
"for ax in axes:\n",
" ax.tick_params('both', labelsize=14)\n",
" ax.set_xticklabels(ax.get_xticklabels(), rotation=90)\n",
" ax.yaxis.label.set_size(14)\n",
" ax.set_xlabel('')\n",
" \n",
" # adjust legend\n",
" h, _ = ax.get_legend_handles_labels()\n",
" ax.get_legend().remove()\n",
"\n",
"# show single legend\n",
"ax4.legend(bbox_to_anchor=(1.3, 1.05), loc=2, frameon=False, fontsize=14);\n",
"\n",
"# save figure\n",
"fig.savefig('./Figures/{}_members_vs_ensemble.pdf'.format(PREDICTAND), bbox_inches='tight')"
]
},
{
"cell_type": "markdown",
"id": "590ffbaf-0e8d-4b63-9264-ad86078d50c9",
"metadata": {},
"source": [
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# initialize figure\n",
"fig, axes = plt.subplots(1, 3, figsize=(16, 5))\n",
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
"# plot bias: ensemble predictions vs. reference\n",
"sns.barplot(x='product', y='bias', hue='loss', data=ensemble, palette=palette, ax=axes[0]);\n",
"\n",
"# plot mae: ensemble predictions vs. reference\n",
"sns.barplot(x='product', y='mae', hue='loss', data=ensemble, palette=palette, ax=axes[1]);\n",
"\n",
"# plot rmse: ensemble predictions vs. reference\n",
"sns.barplot(x='product', y='rmse', hue='loss', data=ensemble, palette=palette, ax=axes[2]);\n",
"\n",
"# add metrics for reference\n",
"for ax, metric in zip(axes, ['bias', 'mae', 'rmse']):\n",
" for product, ls in zip(df_ref['product'], ['-', '--']):\n",
" ax.hlines(df_ref[metric][df_ref['product'] == product].item(), xmin=-0.5, xmax=2.5,\n",
" color='k', ls=ls, label=product)\n",
"\n",
"# axis for bias\n",
"axes[0].set_ylabel('Bias (%)' if PREDICTAND == 'pr' else 'Bias (°C)')\n",
"axes[0].set_ylim(y_lim_bias)\n",
"axes[0].set_yticks(y_ticks_bias)\n",
"\n",
"# axis for mae\n",
"axes[1].set_ylabel('Mean absolute error (mm)' if PREDICTAND == 'pr' else 'Mean absolute error (°C)')\n",
"axes[1].set_ylim(y_lim_mae)\n",
"axes[1].set_yticks(y_ticks_mae)\n",
"\n",
"# axis for rmse\n",
"axes[2].set_ylabel('RMSE (mm)' if PREDICTAND == 'pr' else 'RMSE (°C)')\n",
"axes[2].set_ylim(y_lim_mae)\n",
"axes[2].set_yticks(y_ticks_mae)\n",
"\n",
"# axis fontsize and legend\n",
"for ax in axes:\n",
" ax.tick_params('both', labelsize=14)\n",
" ax.set_xticklabels(ax.get_xticklabels(), rotation=90)\n",
" ax.yaxis.label.set_size(14)\n",
" ax.set_xlabel('')\n",
" \n",
" # adjust legend\n",
" h, _ = ax.get_legend_handles_labels()\n",
" ax.get_legend().remove()\n",
"\n",
"# show single legend\n",
"axes[-1].legend(bbox_to_anchor=(1.05, 1.05), loc=2, frameon=False, fontsize=14);\n",
"\n",
"# save figure\n",
"fig.subplots_adjust(wspace=0.25)\n",
"fig.savefig('./Figures/{}_ensemble_vs_reference.pdf'.format(PREDICTAND), bbox_inches='tight')"
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
]
},
{
"cell_type": "markdown",
"id": "775a3c92-1027-49d2-9681-dd53e0af70ac",
"metadata": {
"tags": []
},
"source": [
"### Regional time series"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dbe5db42-c31c-493b-a3b8-42c794cde6d9",
"metadata": {},
"outputs": [],
"source": [
"# whether to compute rolling or hard mean\n",
"ROLLING = True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fae4d70c-276c-4ba6-b6b6-ba6eb1793e0c",
"metadata": {},
"outputs": [],
"source": [
"# define scale of mean time series\n",
"# scale = '1M' # monthly\n",
"scale = '1Y' # yearly"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5eaaaf2f-d4c4-4f30-b124-66d04d6db2b9",
"metadata": {},
"outputs": [],
"source": [
"# mean time series over entire grid and validation period\n",
"if ROLLING:\n",
" y_pred_ts = ensemble_mean_full.rolling(time=365, center=True).mean().mean(dim=('y', 'x')).dropna('time').compute()\n",
" y_pred_ts_var = ensemble_std_full.rolling(time=365, center=True).mean().mean(dim=('y', 'x')).dropna('time').compute()\n",
" y_true_ts = y_true.rolling(time=365, center=True).mean().mean(dim=('y', 'x')).dropna('time').compute()\n",
" y_refe_ts = y_refe.rolling(time=365, center=True).mean().mean(dim=('y', 'x')).dropna('time').compute()\n",
" y_refe_qm_ts = y_refe_qm.rolling(time=365, center=True).mean().mean(dim=('y', 'x')).dropna('time').compute()\n",
"else:\n",
" y_pred_ts = ensemble_mean_full.resample(time=scale).mean(dim=('time', 'y', 'x')).compute()\n",
" y_pred_ts_var = ensemble_std_full.resample(time=scale).mean(dim=('time', 'y', 'x')).compute()\n",
" y_true_ts = y_true.resample(time=scale).mean(dim=('time', 'y', 'x')).compute()\n",
" y_refe_ts = y_refe.resample(time=scale).mean(dim=('time', 'y', 'x')).compute()\n",
" y_refe_qm_ts = y_refe_qm.resample(time=scale).mean(dim=('time', 'y', 'x')).compute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28bc3177-b6a0-4938-9e74-59be2491fa56",
"metadata": {},
"outputs": [],
"source": [
"# color palette\n",
"palette = sns.color_palette('viridis', 3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "07375015-4205-4dfb-9bd2-0f37d5e56672",
"metadata": {},
"outputs": [],
"source": [
"# factor of standard deviation to plot as uncertainty around ensemble mean prediction\n",
"std_factor = 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ca32179-66ed-4f9d-a8f6-92cb547afe4a",
"metadata": {},
"outputs": [],
"source": [
"# initialize figure\n",
"fig, ax = plt.subplots(1, 1, figsize=(16, 9))\n",
"\n",
"# time to plot on x-axis\n",
"time = y_true_ts.time if ROLLING else [t.astype('datetime64[{}]'.format(scale.lstrip('1'))) for t in y_true_ts.time.values] \n",
"xticks = [t.astype('datetime64[Y]') for t in list(y_true_ts.time.resample(time='1Y').groups.keys())]\n",
"\n",
"# plot reference: observations, ERA-5, ERA-5 QM-adjusted\n",
"ax.plot(time, y_true_ts, label='Observed', ls='-', color='k');\n",
"ax.plot(time, y_refe_ts, label='ERA-5', ls='-', color=palette[0]);\n",
"ax.plot(time, y_refe_qm_ts, label='ERA-5 QM-adjusted', ls='-', color=palette[1]);\n",
"\n",
"# plot model predictions: median and IQR\n",
"ax.plot(time, y_pred_ts, label='Prediction: Ensemble mean', color=palette[-1])\n",
"ax.fill_between(x=time, y1=y_pred_ts - std_factor * y_pred_ts_var, y2=y_pred_ts + std_factor * y_pred_ts_var,\n",
" alpha=0.3, label='Prediction: Ensemble std', color=palette[-1]);\n",
"\n",
"# add legend\n",
"ax.legend(frameon=False, loc='lower right', fontsize=12)\n",
"\n",
"# axis limits and ticks\n",
"ax.set_xticks(xticks)\n",
"ax.set_xticklabels(xticks)\n",
"ax.tick_params(axis='both', labelsize=12)\n",
"\n",
"# save figure\n",
"fig.savefig('./Figures/{}_{}_{}_bootstrap_time_series_{}.png'.format(PREDICTAND, LOSS, OPTIM, scale if not ROLLING else 'rolling'),\n",
" bbox_inches='tight', dpi=300)"
]
},
{
"cell_type": "markdown",
"id": "923762ca-6ebc-4ffa-9b65-2faaf816fc05",
"metadata": {},
"source": [
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a520127b-0dbc-4217-9a00-68cef41afe83",
"metadata": {},
"outputs": [],
"source": [
"# compute ensemble mean yearly mean bias of each grid point\n",
"pred = (ensemble_mean_full.groupby('time.year').mean(dim='time') - y_true_yearly_avg).mean(dim='year').compute()"
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e917db7e-ae9b-48e8-bb23-58905c47a910",
"metadata": {},
"outputs": [],
"source": [
"# plot yearly average bias of references and predictions\n",
"vmin, vmax = -1, 1\n",
"fig, axes = plt.subplots(1, 3, figsize=(24, 8), sharex=True, sharey=True)\n",
"\n",
"# plot bias of ERA-5 reference\n",
"era5 = bias_refe.mean(dim='year')\n",
"im1 = axes[0].imshow(era5.values, origin='lower', cmap='RdBu_r', vmin=vmin, vmax=vmax)\n",
"\n",
"# plot bias of ERA-5 QM-adjusted reference\n",
"era5_qm = bias_refe_qm.mean(dim='year')\n",
"im2 = axes[1].imshow(era5_qm.values, origin='lower', cmap='RdBu_r', vmin=vmin, vmax=vmax)\n",
"\n",
"# plot bias of ensemble model prediction\n",
"im3 = axes[2].imshow(pred, origin='lower', cmap='RdBu_r', vmin=vmin, vmax=vmax)\n",
"\n",
"# set titles\n",
"axes[0].set_title('Era-5', fontsize=14, pad=10);\n",
"axes[1].set_title('Era-5: QM-adjusted', fontsize=14, pad=10);\n",
"axes[2].set_title('Predictions: Ensemble mean', fontsize=14, pad=10)\n",
"\n",
"# adjust axes\n",
"for ax in axes.flat:\n",
" ax.axes.get_xaxis().set_ticklabels([])\n",
" ax.axes.get_xaxis().set_ticks([])\n",
" ax.axes.get_yaxis().set_ticklabels([])\n",
" ax.axes.get_yaxis().set_ticks([])\n",
" ax.axes.axis('tight')\n",
" ax.set_xlabel('')\n",
" ax.set_ylabel('')\n",
" ax.set_axis_off()\n",
"\n",
"# adjust figure\n",
"fig.subplots_adjust(hspace=0, wspace=0, top=0.85)\n",
"\n",
"# add colorbar\n",
"axes = axes.flatten()\n",
"cbar_ax_bias = fig.add_axes([axes[-1].get_position().x1 + 0.01, axes[-1].get_position().y0,\n",
" 0.01, axes[-1].get_position().y1 - axes[-1].get_position().y0])\n",
"cbar_bias = fig.colorbar(im3, cax=cbar_ax_bias)\n",
"cbar_bias.set_label(label='Bias (°C)', fontsize=14)\n",
"cbar_bias.ax.tick_params(labelsize=14, pad=10)\n",
"\n",
"# save figure\n",
"fig.savefig('../Notebooks/Figures/{}_{}_{}_bootstrap_bias.png'.format(PREDICTAND, LOSS, OPTIM), dpi=300, bbox_inches='tight')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 5
}