Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Climax
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
Climax
Commits
56e8d37c
Commit
56e8d37c
authored
3 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Clean version.
parent
5998cb2b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
climax/main/downscale_train.py
+100
-100
100 additions, 100 deletions
climax/main/downscale_train.py
with
100 additions
and
100 deletions
climax/main/downscale_train.py
+
100
−
100
View file @
56e8d37c
...
...
@@ -4,6 +4,7 @@
# -*- coding: utf-8 -*-
# builtins
import
sys
import
time
import
logging
from
datetime
import
timedelta
...
...
@@ -61,107 +62,106 @@ if __name__ == '__main__':
if
state_file
.
exists
()
and
not
OVERWRITE
:
# load pretrained network
net
,
_
=
Network
.
load_pretrained_model
(
state_file
,
NET
)
sys
.
exit
()
# initialize ERA5 predictor dataset
LogConfig
.
init_log
(
'
Initializing ERA5 predictors.
'
)
Era5
=
ERA5Dataset
(
ERA5_PATH
.
joinpath
(
'
ERA5
'
),
ERA5_PREDICTORS
,
plevels
=
ERA5_PLEVELS
)
Era5_ds
=
Era5
.
merge
(
chunks
=-
1
)
# initialize OBS predictand dataset
LogConfig
.
init_log
(
'
Initializing observations for predictand: {}
'
.
format
(
PREDICTAND
))
# check whether to joinlty train tasmin and tasmax
if
PREDICTAND
==
'
tas
'
:
# read both tasmax and tasmin
tasmax
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmax
'
),
'
.nc$
'
).
pop
())
tasmin
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmin
'
),
'
.nc$
'
).
pop
())
Obs_ds
=
xr
.
merge
([
tasmax
,
tasmin
])
else
:
# initialize ERA5 predictor dataset
LogConfig
.
init_log
(
'
Initializing ERA5 predictors.
'
)
Era5
=
ERA5Dataset
(
ERA5_PATH
.
joinpath
(
'
ERA5
'
),
ERA5_PREDICTORS
,
plevels
=
ERA5_PLEVELS
)
Era5_ds
=
Era5
.
merge
(
chunks
=-
1
)
# initialize OBS predictand dataset
LogConfig
.
init_log
(
'
Initializing observations for predictand: {}
'
.
format
(
PREDICTAND
))
# check whether to joinlty train tasmin and tasmax
if
PREDICTAND
==
'
tas
'
:
# read both tasmax and tasmin
tasmax
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmax
'
),
'
.nc$
'
).
pop
())
tasmin
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmin
'
),
'
.nc$
'
).
pop
())
Obs_ds
=
xr
.
merge
([
tasmax
,
tasmin
])
else
:
# read in-situ gridded observations
Obs_ds
=
search_files
(
OBS_PATH
.
joinpath
(
PREDICTAND
),
'
.nc$
'
).
pop
()
Obs_ds
=
xr
.
open_dataset
(
Obs_ds
)
# whether to use digital elevation model
if
DEM
:
# digital elevation model: Copernicus EU-Dem v1.1
dem
=
search_files
(
DEM_PATH
,
'
^eu_dem_v11_stt.nc$
'
).
pop
()
# read elevation and compute slope and aspect
dem
=
ERA5Dataset
.
dem_features
(
dem
,
{
'
y
'
:
Era5_ds
.
y
,
'
x
'
:
Era5_ds
.
x
},
add_coord
=
{
'
time
'
:
Era5_ds
.
time
})
# check whether to use slope and aspect
if
not
DEM_FEATURES
:
dem
=
dem
.
drop_vars
([
'
slope
'
,
'
aspect
'
])
# add dem to set of predictor variables
Era5_ds
=
xr
.
merge
([
Era5_ds
,
dem
])
# initialize network and optimizer
LogConfig
.
init_log
(
'
Initializing network and optimizer.
'
)
# define number of output fields
# check whether modelling pr with probabilistic approach
outputs
=
len
(
Obs_ds
.
data_vars
)
if
PREDICTAND
==
'
pr
'
and
(
isinstance
(
LOSS
,
BernoulliGammaLoss
)
or
isinstance
(
LOSS
,
BernoulliGenParetoLoss
)):
outputs
=
3
# instanciate network
inputs
=
len
(
Era5_ds
.
data_vars
)
+
2
if
DOY
else
len
(
Era5_ds
.
data_vars
)
net
=
NET
(
state_file
,
inputs
,
outputs
,
filters
=
FILTERS
)
# initialize optimizer
# optimizer = torch.optim.Adam(net.parameters(), lr=LR,
# weight_decay=LAMBDA)
optimizer
=
torch
.
optim
.
SGD
(
net
.
parameters
(),
lr
=
LR
,
momentum
=
0.9
,
weight_decay
=
LAMBDA
)
# initialize training data
LogConfig
.
init_log
(
'
Initializing training data.
'
)
# split calibration period into training and validation period
if
PREDICTAND
==
'
pr
'
and
STRATIFY
:
# stratify training and validation dataset by number of
# observed wet days for precipitation
wet_days
=
(
Obs_ds
.
sel
(
time
=
CALIB_PERIOD
).
mean
(
dim
=
(
'
y
'
,
'
x
'
))
>=
WET_DAY_THRESHOLD
).
to_array
().
values
.
squeeze
()
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
stratify
=
wet_days
,
test_size
=
0.1
)
# sort chronologically
train
,
valid
=
sorted
(
train
),
sorted
(
valid
)
else
:
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
shuffle
=
False
,
test_size
=
0.1
)
# training and validation dataset
Era5_train
,
Obs_train
=
Era5_ds
.
sel
(
time
=
train
),
Obs_ds
.
sel
(
time
=
train
)
Era5_valid
,
Obs_valid
=
Era5_ds
.
sel
(
time
=
valid
),
Obs_ds
.
sel
(
time
=
valid
)
# create PyTorch compliant dataset and dataloader instances for model
# training
train_ds
=
NetCDFDataset
(
Era5_train
,
Obs_train
,
normalize
=
NORM
,
doy
=
DOY
)
valid_ds
=
NetCDFDataset
(
Era5_valid
,
Obs_valid
,
normalize
=
NORM
,
doy
=
DOY
)
train_dl
=
DataLoader
(
train_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
valid_dl
=
DataLoader
(
valid_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
# initialize network trainer
trainer
=
NetworkTrainer
(
net
,
optimizer
,
net
.
state_file
,
train_dl
,
valid_dl
,
loss_function
=
LOSS
,
**
TRAIN_CONFIG
)
# train model
state
=
trainer
.
train
()
# read in-situ gridded observations
Obs_ds
=
search_files
(
OBS_PATH
.
joinpath
(
PREDICTAND
),
'
.nc$
'
).
pop
()
Obs_ds
=
xr
.
open_dataset
(
Obs_ds
)
# whether to use digital elevation model
if
DEM
:
# digital elevation model: Copernicus EU-Dem v1.1
dem
=
search_files
(
DEM_PATH
,
'
^eu_dem_v11_stt.nc$
'
).
pop
()
# read elevation and compute slope and aspect
dem
=
ERA5Dataset
.
dem_features
(
dem
,
{
'
y
'
:
Era5_ds
.
y
,
'
x
'
:
Era5_ds
.
x
},
add_coord
=
{
'
time
'
:
Era5_ds
.
time
})
# check whether to use slope and aspect
if
not
DEM_FEATURES
:
dem
=
dem
.
drop_vars
([
'
slope
'
,
'
aspect
'
])
# add dem to set of predictor variables
Era5_ds
=
xr
.
merge
([
Era5_ds
,
dem
])
# initialize network and optimizer
LogConfig
.
init_log
(
'
Initializing network and optimizer.
'
)
# define number of output fields
# check whether modelling pr with probabilistic approach
outputs
=
len
(
Obs_ds
.
data_vars
)
if
PREDICTAND
==
'
pr
'
and
(
isinstance
(
LOSS
,
BernoulliGammaLoss
)
or
isinstance
(
LOSS
,
BernoulliGenParetoLoss
)):
outputs
=
3
# instanciate network
inputs
=
len
(
Era5_ds
.
data_vars
)
+
2
if
DOY
else
len
(
Era5_ds
.
data_vars
)
net
=
NET
(
state_file
,
inputs
,
outputs
,
filters
=
FILTERS
)
# initialize optimizer
# optimizer = torch.optim.Adam(net.parameters(), lr=LR,
# weight_decay=LAMBDA)
optimizer
=
torch
.
optim
.
SGD
(
net
.
parameters
(),
lr
=
LR
,
momentum
=
0.9
,
weight_decay
=
LAMBDA
)
# initialize training data
LogConfig
.
init_log
(
'
Initializing training data.
'
)
# split calibration period into training and validation period
if
PREDICTAND
==
'
pr
'
and
STRATIFY
:
# stratify training and validation dataset by number of
# observed wet days for precipitation
wet_days
=
(
Obs_ds
.
sel
(
time
=
CALIB_PERIOD
).
mean
(
dim
=
(
'
y
'
,
'
x
'
))
>=
WET_DAY_THRESHOLD
).
to_array
().
values
.
squeeze
()
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
stratify
=
wet_days
,
test_size
=
0.1
)
# sort chronologically
train
,
valid
=
sorted
(
train
),
sorted
(
valid
)
else
:
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
shuffle
=
False
,
test_size
=
0.1
)
# training and validation dataset
Era5_train
,
Obs_train
=
Era5_ds
.
sel
(
time
=
train
),
Obs_ds
.
sel
(
time
=
train
)
Era5_valid
,
Obs_valid
=
Era5_ds
.
sel
(
time
=
valid
),
Obs_ds
.
sel
(
time
=
valid
)
# create PyTorch compliant dataset and dataloader instances for model
# training
train_ds
=
NetCDFDataset
(
Era5_train
,
Obs_train
,
normalize
=
NORM
,
doy
=
DOY
)
valid_ds
=
NetCDFDataset
(
Era5_valid
,
Obs_valid
,
normalize
=
NORM
,
doy
=
DOY
)
train_dl
=
DataLoader
(
train_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
valid_dl
=
DataLoader
(
valid_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
# initialize network trainer
trainer
=
NetworkTrainer
(
net
,
optimizer
,
net
.
state_file
,
train_dl
,
valid_dl
,
loss_function
=
LOSS
,
**
TRAIN_CONFIG
)
# train model
state
=
trainer
.
train
()
# log execution time of script
LogConfig
.
init_log
(
'
Execution time of script {}: {}
'
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment