Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Climax
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
Climax
Commits
9c912abe
Commit
9c912abe
authored
3 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Set learning and weight decay rates for supersampling task.
parent
4729b62e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
climax/main/config.py
+20
-17
20 additions, 17 deletions
climax/main/config.py
with
20 additions
and
17 deletions
climax/main/config.py
+
20
−
17
View file @
9c912abe
...
...
@@ -22,14 +22,14 @@ from climax.core.loss import (BernoulliGammaLoss, MSELoss, L1Loss,
# -----------------------------------------------------------------------------
# ERA5 predictor variables on pressure levels
ERA5_P_PREDICTORS
=
[
'
geopotential
'
,
'
temperature
'
,
'
u_component_of_wind
'
,
'
v_component_of_wind
'
,
'
specific_humidity
'
]
#
ERA5_P_PREDICTORS = []
#
ERA5_P_PREDICTORS = ['geopotential', 'temperature', 'u_component_of_wind',
#
'v_component_of_wind', 'specific_humidity']
ERA5_P_PREDICTORS
=
[]
assert
all
([
var
in
ERA5_P_VARIABLES
for
var
in
ERA5_P_PREDICTORS
])
# ERA5 predictor variables on single levels
ERA5_S_PREDICTORS
=
[
'
surface_pressure
'
]
#
ERA5_S_PREDICTORS = ['total_precipitation']
#
ERA5_S_PREDICTORS = ['surface_pressure']
ERA5_S_PREDICTORS
=
[
'
total_precipitation
'
]
assert
all
([
var
in
ERA5_S_VARIABLES
for
var
in
ERA5_S_PREDICTORS
])
# ERA5 predictor variables
...
...
@@ -50,10 +50,10 @@ CHUNKS = {'time': 365}
# -----------------------------------------------------------------------------
# include day of year as predictor
DOY
=
Tru
e
DOY
=
Fals
e
# use digital elevation model instead of model orography
DEM
=
Tru
e
DEM
=
Fals
e
if
DEM
:
# remove model orography when using DEM
if
'
orography
'
in
ERA5_S_PREDICTORS
:
...
...
@@ -91,14 +91,14 @@ VALID_SIZE = 0.2
CV
=
5
# number of bootstrapped model trainings
BOOTSTRAP
=
10
BOOTSTRAP
=
10
# -----------------------------------------------------------------------------
# Observations ----------------------------------------------------------------
# -----------------------------------------------------------------------------
# target variable: check if target variable is valid
PREDICTAND
=
'
pr
'
PREDICTAND
=
'
pr
'
assert
PREDICTAND
in
PREDICTANDS
# threshold defining the minimum amount of precipitation (mm) for a wet day
...
...
@@ -122,10 +122,10 @@ FILTERS = [32, 64, 128, 256]
# for precipitation:
# BernoulliGammaLoss (NLL of Bernoulli-Gamma distribution)
# BernoulliWeibullLoss (NLL of Bernoulli-Weibull distribution)
# LOSS
= L1
Loss()
LOSS
=
MSELoss
()
# LOSS
= BernoulliGammaLoss(min_amount=1
)
# LOSS
= BernoulliWeibullLoss(min_amount=1
)
# LOSS
=MSE
Loss()
LOSS
=
MSELoss
()
# LOSS
=MSELoss(
)
# LOSS
=MSELoss(
)
# batch size: number of time steps processed by the net in each iteration
BATCH_SIZE
=
16
...
...
@@ -164,17 +164,20 @@ if PREDICTAND is 'pr':
WEIGHT_DECAY
=
1e-5
if
isinstance
(
LOSS
,
MSELoss
):
MAX_LR
=
0.0004
WEIGHT_DECAY
=
1e-3
# weight decay rates for supersampling task
if
not
any
(
ERA5_P_PREDICTORS
)
and
ERA5_S_PREDICTORS
==
'
pr
'
:
WEIGHT_DECAY
=
1e-5
else
:
WEIGHT_DECAY
=
1e-3
if
isinstance
(
LOSS
,
BernoulliGammaLoss
):
# learning rates for supersampling task
if
not
any
(
ERA5_P_PREDICTORS
)
and
ERA5_S_PREDICTORS
==
'
pr
'
:
MAX_LR
=
0.001
WEIGHT_DECAY
=
1e-4
else
:
MAX_LR
=
0.0005
if
OPTIM
is
torch
.
optim
.
Adam
else
0.001
# weight decay
WEIGHT_DECAY
=
1e-2
WEIGHT_DECAY
=
1e-2
# base learning rate: MAX_LR / 4 (Smith L. (2017))
BASE_LR
=
MAX_LR
/
4
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment