" for season in bias_snl_ref[NAMES[PREDICTAND]].season:\n",
" print('(ERA-5) Average bias of mean {} for season {}: {:.1f}%'.format(var, season.values.item(), bias_snl_ref[var].sel(season=season).mean().item()))"
]
]
},
},
{
{
...
@@ -500,10 +658,10 @@
...
@@ -500,10 +658,10 @@
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
"# print average bias per season\n",
"# print average bias per season: model\n",
"for var in bias_snl.data_vars:\n",
"for var in bias_snl.data_vars:\n",
" for season in bias_snl[NAMES[PREDICTAND]].season:\n",
" for season in bias_snl[NAMES[PREDICTAND]].season:\n",
" print('Average bias of mean {} for season {}: {:.1f}%'.format(var, season.values.item(), bias_snl[var].sel(season=season).mean().item()))"
" print('(Model) Average bias of mean {} for season {}: {:.1f}%'.format(var, season.values.item(), bias_snl[var].sel(season=season).mean().item()))"
"# print average bias in extreme per season: ERA-5\n",
"for var in bias_ex_snl_ref.data_vars:\n",
" for season in bias_ex_snl_ref[NAMES[PREDICTAND]].season:\n",
" print('(ERA-5) Average bias of P{:.0f} {} for season {}: {:.1f}%'.format(quantile * 100, var, season.values.item(), bias_ex_snl_ref[var].sel(season=season).mean().item()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0671b4f3-52c6-4167-b35b-03902dbe11a3",
"metadata": {},
"outputs": [],
"source": [
"# print average bias in extreme per season: Model\n",
"for var in bias_ex_snl.data_vars:\n",
"for var in bias_ex_snl.data_vars:\n",
" for season in bias_ex_snl[NAMES[PREDICTAND]].season:\n",
" for season in bias_ex_snl[NAMES[PREDICTAND]].season:\n",
" print('Average bias of P{:.0f} {} for season {}: {:.1f}%'.format(quantile * 100, var, season.values.item(), bias_ex_snl[var].sel(season=season).mean().item()))"
" print('(Model) Average bias of P{:.0f} {} for season {}: {:.1f}%'.format(quantile * 100, var, season.values.item(), bias_ex_snl[var].sel(season=season).mean().item()))"
We used **1981-1991 as training** period and **1991-2010 as reference** period. The results shown in this notebook are based on the model predictions on the reference period.
We used **1981-1991 as training** period and **1991-2010 as reference** period. The results shown in this notebook are based on the model predictions on the reference period.
For precipitation, the network is optimizing the negative log-likelihood of a Bernoulli-Gamma distribution after [Cannon (2008)](http://journals.ametsoc.org/doi/10.1175/2008JHM960.1).
For precipitation, the network is optimizing the negative log-likelihood of a Bernoulli-Gamma distribution after [Cannon (2008)](http://journals.ametsoc.org/doi/10.1175/2008JHM960.1).
print('(ERA-5) Average bias of P{:.0f} {} for season {}: {:.1f}%'.format(quantile*100,var,season.values.item(),bias_ex_snl_ref[var].sel(season=season).mean().item()))
print('Average bias of P{:.0f} {} for season {}: {:.1f}%'.format(quantile*100,var,season.values.item(),bias_ex_snl[var].sel(season=season).mean().item()))
print('(Model) Average bias of P{:.0f} {} for season {}: {:.1f}%'.format(quantile*100,var,season.values.item(),bias_ex_snl[var].sel(season=season).mean().item()))