Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Climax
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
Climax
Commits
bb163db5
Commit
bb163db5
authored
3 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Optimal hyperparameters from sensitivity analysis.
parent
c8a39ab6
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
climax/main/config.py
+22
-7
22 additions, 7 deletions
climax/main/config.py
with
22 additions
and
7 deletions
climax/main/config.py
+
22
−
7
View file @
bb163db5
...
...
@@ -28,8 +28,6 @@ ERA5_P_PREDICTORS = ['geopotential', 'temperature', 'u_component_of_wind',
assert
all
([
var
in
ERA5_P_VARIABLES
for
var
in
ERA5_P_PREDICTORS
])
# ERA5 predictor variables on single levels
# ERA5_S_PREDICTORS = ['mean_sea_level_pressure', 'orography', '2m_temperature']
# ERA5_S_PREDICTORS = ['mean_sea_level_pressure']
ERA5_S_PREDICTORS
=
[
'
surface_pressure
'
]
# ERA5_S_PREDICTORS = ['total_precipitation']
assert
all
([
var
in
ERA5_S_VARIABLES
for
var
in
ERA5_S_PREDICTORS
])
...
...
@@ -129,44 +127,61 @@ LOSS = MSELoss()
# LOSS = BernoulliGammaLoss(min_amount=1)
# LOSS = BernoulliWeibullLoss(min_amount=1)
# batch size: number of time steps processed by the net in each iteration
BATCH_SIZE
=
16
# stochastic optimization algorithm
# OPTIM = torch.optim.SGD
OPTIM
=
torch
.
optim
.
Adam
# batch size: number of time steps processed by the net in each iteration
BATCH_SIZE
=
16
# stochastic hyperparameters determined from sensitivity analysis
# m
ax
imum
learning rate determined from learning rate range test
# m
in
imum
temperature
if
PREDICTAND
is
'
tasmin
'
:
# learning rate and weight decay: based on sensitivity analysis
if
isinstance
(
LOSS
,
L1Loss
):
MAX_LR
=
0.001
if
OPTIM
is
torch
.
optim
.
Adam
else
0.004
WEIGHT_DECAY
=
1e-3
if
isinstance
(
LOSS
,
MSELoss
):
MAX_LR
=
0.001
if
OPTIM
is
torch
.
optim
.
Adam
else
0.002
WEIGHT_DECAY
=
0
# maximum temperature
if
PREDICTAND
is
'
tasmax
'
:
if
isinstance
(
LOSS
,
L1Loss
):
MAX_LR
=
0.001
WEIGHT_DECAY
=
1e-3
if
isinstance
(
LOSS
,
MSELoss
):
MAX_LR
=
0.001
if
OPTIM
is
torch
.
optim
.
Adam
else
0.004
WEIGHT_DECAY
=
1e-2
# precipitation
if
PREDICTAND
is
'
pr
'
:
if
isinstance
(
LOSS
,
L1Loss
):
MAX_LR
=
0.001
WEIGHT_DECAY
=
1e-5
if
isinstance
(
LOSS
,
MSELoss
):
MAX_LR
=
0.0004
WEIGHT_DECAY
=
1e-3
if
isinstance
(
LOSS
,
BernoulliGammaLoss
):
# learning rates for supersampling task
if
not
any
(
ERA5_P_PREDICTORS
)
and
ERA5_S_PREDICTORS
==
'
pr
'
:
MAX_LR
=
0.001
else
:
MAX_LR
=
0.0005
if
OPTIM
is
torch
.
optim
.
Adam
else
0.001
# weight decay
WEIGHT_DECAY
=
1e-2
# base learning rate: MAX_LR / 4 (Smith L. (2017))
BASE_LR
=
MAX_LR
/
4
# optimization parameters
OPTIM_PARAMS
=
{
'
lr
'
:
BASE_LR
,
'
weight_decay
'
:
0
'
weight_decay
'
:
WEIGHT_DECAY
}
if
OPTIM
is
torch
.
optim
.
SGD
:
OPTIM_PARAMS
[
'
momentum
'
]
=
0.99
# SGD with momentum
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment