Skip to content
Snippets Groups Projects
Commit e964a778 authored by Frisinghelli Daniel's avatar Frisinghelli Daniel
Browse files

Aggregate ERA5 from hourly to daily average.

parent a693fd8a
No related branches found
No related tags found
No related merge requests found
......@@ -3,4 +3,90 @@
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# builtins
import re
import sys
import logging
from logging.config import dictConfig
# externals
import xarray as xr
# locals
from climax.core.cli import preprocess_era5_parser
from climax.core.constants import ERA5_VARIABLES
from pysegcnn.core.logging import log_conf
from pysegcnn.core.utils import search_files
from pysegcnn.core.trainer import LogConfig
# module level logger
LOGGER = logging.getLogger(__name__)
if __name__ == '__main__':
# initialize logging
dictConfig(log_conf())
# define command line argument parser
parser = preprocess_era5_parser()
# parse command line arguments
args = sys.argv[1:]
if not args:
parser.print_help()
sys.exit()
else:
args = parser.parse_args(args)
# check whether the source directory exists
if args.source.exists():
# check whether the target grid file exists
if not args.grid.exists():
LOGGER.info('{} does not exist.'.format(args.grid))
sys.exit()
# check whether a single variable is specified
variables = ERA5_VARIABLES
if args.variable is not None:
variables = args.variable
# iterate over the variables to preprocess
for var in variables:
# path to files of the current variable
files = search_files(args.source,
'_'.join(['^ERA5', var, '[0-9]{4}.nc$']))
ymin, ymax = (re.search('[0-9]{4}', files[0].name)[0],
re.search('[0-9]{4}', files[-1].name)[0])
# check if aggregate file exists
filename = '_'.join(['ERA5', var, ymin, ymax])
filename = args.target.joinpath(var, filename)
if filename.exists() and not args.overwrite:
LOGGER.info('{} already exists.'.format(filename))
continue
# aggregate files for different years into a single file using
# xarray and dask
ds = xr.open_mfdataset(files, parallel=True).compute()
LogConfig.init_log('Aggregating ERA5 years: {}'.format(
'-'.join([ymin, ymax])))
LOGGER.info(('\n ' + (len(__name__) + 1) * ' ').join(
['{}'.format(file) for file in files]))
# aggregate hourly data to daily data: resample in case of missing
# days
ds = ds.resample(time='D').mean(dim='time')
# set NetCDF file compression for each variable
for _, var in ds.data_vars.items():
var.encoding['zlib'] = True
var.encoding['complevel'] = 5
# save aggregated netcdf file
LOGGER.info('Compressing NetCDF: {}'.format(filename))
ds.to_netcdf(filename, engine='h5netcdf')
else:
LOGGER.info('{} does not exist.'.format(str(args.source)))
sys.exit()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment