by using the provided ``environment.yml`` file. In a terminal, navigate to the
**cloned git repositories root directory** (``/pysegcnn``) and type:
```bash
conda env create -f environment.yml
```
This may take a while. The first line in ``environment.yml`` defines the
environment name, in this case ``pysegcnn``. Activate your environment using:
```bash
conda activate pysegcnn
```
After activating your environment, type:
```bash
pip install-e .
```
This will install ``pysegcnn`` - if successful, you should be able to import
``pysegcnn`` from any Python interpreter using
```python
importpysegcnn
```
## Datasets
Currently, the following publicly available satellite imagery datasets are supported out-of-the-box:
Currently, the following publicly available satellite imagery datasets are
supported out-of-the-box:
- Spatial Procedures for Automated Removal of Cloud and Shadow ([SPARCS](https://www.usgs.gov/land-resources/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs-validation)) by Hughes M.J. & Hayes D.J. ([2014](https://www.mdpi.com/2072-4292/6/6/4907))
-[Cloud-38](https://github.com/SorourMo/38-Cloud-A-Cloud-Segmentation-Dataset) and [Cloud-95](https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset) by Mohajerani S. & Saeedi P. ([2019](https://arxiv.org/abs/1901.10077), [2020](https://arxiv.org/abs/2001.08768))
- Spatial Procedures for Automated Removal of Cloud and Shadow([SPARCS](https://www.usgs.gov/land-resources/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs-validation)) by Hughes M.J. & Hayes D.J. ([2014](https://www.mdpi.com/2072-4292/6/6/4907))