Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PySegCNN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
PySegCNN
Commits
391743ad
Commit
391743ad
authored
4 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Implemented python logging module
parent
4338ddfb
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
pysegcnn/core/logging.py
+47
-0
47 additions, 0 deletions
pysegcnn/core/logging.py
pysegcnn/core/models.py
+11
-4
11 additions, 4 deletions
pysegcnn/core/models.py
pysegcnn/core/predict.py
+11
-9
11 additions, 9 deletions
pysegcnn/core/predict.py
pysegcnn/core/utils.py
+16
-16
16 additions, 16 deletions
pysegcnn/core/utils.py
with
85 additions
and
29 deletions
pysegcnn/core/logging.py
0 → 100644
+
47
−
0
View file @
391743ad
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 14 10:07:12 2020
@author: Daniel
"""
# the logging configuration dictionary
def
log_conf
(
logfile
):
LOGGING_CONFIG
=
{
'
version
'
:
1
,
'
disable_existing_loggers
'
:
False
,
'
formatters
'
:
{
'
brief
'
:
{
'
format
'
:
'
%(name)s: %(message)s
'
},
'
standard
'
:
{
'
format
'
:
'
%(asctime)s [%(levelname)s] %(name)s: %(message)s
'
},
},
'
handlers
'
:
{
'
console
'
:
{
'
class
'
:
'
logging.StreamHandler
'
,
'
formatter
'
:
'
brief
'
,
'
level
'
:
'
INFO
'
,
'
stream
'
:
'
ext://sys.stderr
'
,
},
'
file
'
:
{
'
class
'
:
'
logging.FileHandler
'
,
'
formatter
'
:
'
standard
'
,
'
level
'
:
'
INFO
'
,
'
filename
'
:
logfile
,
'
mode
'
:
'
w
'
}
},
'
loggers
'
:
{
''
:
{
'
handlers
'
:
[
'
console
'
,
'
file
'
],
'
level
'
:
'
INFO
'
,
},
}
}
return
LOGGING_CONFIG
This diff is collapsed.
Click to expand it.
pysegcnn/core/models.py
+
11
−
4
View file @
391743ad
...
@@ -8,6 +8,7 @@ Created on Fri Jun 26 16:31:36 2020
...
@@ -8,6 +8,7 @@ Created on Fri Jun 26 16:31:36 2020
# builtins
# builtins
import
os
import
os
import
enum
import
enum
import
logging
# externals
# externals
import
numpy
as
np
import
numpy
as
np
...
@@ -19,6 +20,9 @@ import torch.optim as optim
...
@@ -19,6 +20,9 @@ import torch.optim as optim
from
pysegcnn.core.layers
import
(
Encoder
,
Decoder
,
Conv2dPool
,
Conv2dUnpool
,
from
pysegcnn.core.layers
import
(
Encoder
,
Decoder
,
Conv2dPool
,
Conv2dUnpool
,
Conv2dUpsample
,
Conv2dSame
)
Conv2dUpsample
,
Conv2dSame
)
# module level logger
LOGGER
=
logging
.
getLogger
(
__name__
)
class
Network
(
nn
.
Module
):
class
Network
(
nn
.
Module
):
...
@@ -43,7 +47,10 @@ class Network(nn.Module):
...
@@ -43,7 +47,10 @@ class Network(nn.Module):
# initialize dictionary to store network parameters
# initialize dictionary to store network parameters
model_state
=
{}
model_state
=
{}
# store input bands
# store model name
model_state
[
'
cls
'
]
=
self
.
__class__
# store the bands the model was trained with
model_state
[
'
bands
'
]
=
bands
model_state
[
'
bands
'
]
=
bands
# store construction parameters to instanciate the network
# store construction parameters to instanciate the network
...
@@ -67,7 +74,7 @@ class Network(nn.Module):
...
@@ -67,7 +74,7 @@ class Network(nn.Module):
# model state dictionary stores the values of all trainable parameters
# model state dictionary stores the values of all trainable parameters
state
=
os
.
path
.
join
(
outpath
,
state_file
)
state
=
os
.
path
.
join
(
outpath
,
state_file
)
torch
.
save
(
model_state
,
state
)
torch
.
save
(
model_state
,
state
)
print
(
'
Network parameters saved in {}
'
.
format
(
state
))
LOGGER
.
info
(
'
Network parameters saved in {}
'
.
format
(
state
))
return
state
return
state
...
@@ -79,13 +86,13 @@ class Network(nn.Module):
...
@@ -79,13 +86,13 @@ class Network(nn.Module):
model_state
=
torch
.
load
(
state
)
model_state
=
torch
.
load
(
state
)
# resume network parameters
# resume network parameters
print
(
'
Loading
network
parameters
from {}
...
'
.
format
(
state
))
LOGGER
.
info
(
'
Loading
model
parameters ...
'
.
format
(
state
))
self
.
load_state_dict
(
model_state
[
'
model_state_dict
'
])
self
.
load_state_dict
(
model_state
[
'
model_state_dict
'
])
self
.
epoch
=
model_state
[
'
epoch
'
]
self
.
epoch
=
model_state
[
'
epoch
'
]
# resume optimizer parameters
# resume optimizer parameters
if
optimizer
is
not
None
:
if
optimizer
is
not
None
:
print
(
'
Loading optimizer parameters
from {}
...
'
.
format
(
state
))
LOGGER
.
info
(
'
Loading optimizer parameters ...
'
.
format
(
state
))
optimizer
.
load_state_dict
(
model_state
[
'
optim_state_dict
'
])
optimizer
.
load_state_dict
(
model_state
[
'
optim_state_dict
'
])
return
state
return
state
...
...
This diff is collapsed.
Click to expand it.
pysegcnn/core/predict.py
+
11
−
9
View file @
391743ad
# builtins
# builtins
import
os
import
os
import
pathlib
import
pathlib
import
logging
# externals
# externals
import
numpy
as
np
import
numpy
as
np
...
@@ -14,6 +15,9 @@ from pysegcnn.core.utils import reconstruct_scene, accuracy_function
...
@@ -14,6 +15,9 @@ from pysegcnn.core.utils import reconstruct_scene, accuracy_function
from
pysegcnn.core.graphics
import
plot_sample
from
pysegcnn.core.graphics
import
plot_sample
from
pysegcnn.core.split
import
RandomSubset
,
SceneSubset
from
pysegcnn.core.split
import
RandomSubset
,
SceneSubset
# module level logger
LOGGER
=
logging
.
getLogger
(
__name__
)
def
get_scene_tiles
(
ds
,
scene_id
):
def
get_scene_tiles
(
ds
,
scene_id
):
...
@@ -33,7 +37,6 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
...
@@ -33,7 +37,6 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
# check whether the dataset is a valid subset, i.e.
# check whether the dataset is a valid subset, i.e.
# an instance of pysegcnn.core.split.SceneSubset or
# an instance of pysegcnn.core.split.SceneSubset or
# an instance of pysegcnn.core.split.RandomSubset
# an instance of pysegcnn.core.split.RandomSubset
_name
=
type
(
ds
).
__name__
if
not
isinstance
(
ds
,
RandomSubset
)
or
not
isinstance
(
ds
,
SceneSubset
):
if
not
isinstance
(
ds
,
RandomSubset
)
or
not
isinstance
(
ds
,
SceneSubset
):
raise
TypeError
(
'
ds should be an instance of {} or of {}.
'
raise
TypeError
(
'
ds should be an instance of {} or of {}.
'
.
format
(
repr
(
RandomSubset
),
repr
(
SceneSubset
)))
.
format
(
repr
(
RandomSubset
),
repr
(
SceneSubset
)))
...
@@ -50,7 +53,7 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
...
@@ -50,7 +53,7 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
_
=
model
.
load
(
state_file
.
name
,
optimizer
,
state_file
.
parent
)
_
=
model
.
load
(
state_file
.
name
,
optimizer
,
state_file
.
parent
)
# set the model to evaluation mode
# set the model to evaluation mode
print
(
'
Setting model to evaluation mode ...
'
)
LOGGER
.
info
(
'
Setting model to evaluation mode ...
'
)
model
.
eval
()
model
.
eval
()
model
.
to
(
device
)
model
.
to
(
device
)
...
@@ -66,7 +69,7 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
...
@@ -66,7 +69,7 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
# iterate over the samples and plot inputs, ground truth and
# iterate over the samples and plot inputs, ground truth and
# model predictions
# model predictions
output
=
{}
output
=
{}
print
(
'
Predicting samples of the {} dataset ...
'
.
format
(
ds
.
name
))
LOGGER
.
info
(
'
Predicting samples of the {} dataset ...
'
.
format
(
ds
.
name
))
for
batch
,
(
inputs
,
labels
)
in
enumerate
(
dataloader
):
for
batch
,
(
inputs
,
labels
)
in
enumerate
(
dataloader
):
# send inputs and labels to device
# send inputs and labels to device
...
@@ -80,9 +83,8 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
...
@@ -80,9 +83,8 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
# store output for current batch
# store output for current batch
output
[
batch
]
=
{
'
input
'
:
inputs
,
'
labels
'
:
labels
,
'
prediction
'
:
prd
}
output
[
batch
]
=
{
'
input
'
:
inputs
,
'
labels
'
:
labels
,
'
prediction
'
:
prd
}
print
(
'
Sample: {:d}/{:d}, Accuracy: {:.2f}
'
LOGGER
.
info
(
'
Sample: {:d}/{:d}, Accuracy: {:.2f}
'
.
format
(
.
format
(
batch
+
1
,
len
(
dataloader
),
batch
+
1
,
len
(
dataloader
),
accuracy_function
(
prd
,
labels
)))
accuracy_function
(
prd
,
labels
)))
# update confusion matrix
# update confusion matrix
if
cm
:
if
cm
:
...
@@ -126,7 +128,7 @@ def predict_scenes(ds, model, optimizer, state_file,
...
@@ -126,7 +128,7 @@ def predict_scenes(ds, model, optimizer, state_file,
_
=
model
.
load
(
state_file
.
name
,
optimizer
,
state_file
.
parent
)
_
=
model
.
load
(
state_file
.
name
,
optimizer
,
state_file
.
parent
)
# set the model to evaluation mode
# set the model to evaluation mode
print
(
'
Setting model to evaluation mode ...
'
)
LOGGER
.
info
(
'
Setting model to evaluation mode ...
'
)
model
.
eval
()
model
.
eval
()
model
.
to
(
device
)
model
.
to
(
device
)
...
@@ -147,7 +149,7 @@ def predict_scenes(ds, model, optimizer, state_file,
...
@@ -147,7 +149,7 @@ def predict_scenes(ds, model, optimizer, state_file,
scene_size
=
(
ds
.
dataset
.
height
,
ds
.
dataset
.
width
)
scene_size
=
(
ds
.
dataset
.
height
,
ds
.
dataset
.
width
)
# iterate over the scenes
# iterate over the scenes
print
(
'
Predicting scenes of the {} dataset ...
'
.
format
(
ds
.
name
))
LOGGER
.
info
(
'
Predicting scenes of the {} dataset ...
'
.
format
(
ds
.
name
))
scenes
=
{}
scenes
=
{}
for
i
,
sid
in
enumerate
(
scene_ids
):
for
i
,
sid
in
enumerate
(
scene_ids
):
...
@@ -187,7 +189,7 @@ def predict_scenes(ds, model, optimizer, state_file,
...
@@ -187,7 +189,7 @@ def predict_scenes(ds, model, optimizer, state_file,
prdtcn
=
reconstruct_scene
(
prd
,
scene_size
,
nbands
=
1
)
prdtcn
=
reconstruct_scene
(
prd
,
scene_size
,
nbands
=
1
)
# print progress
# print progress
print
(
'
Scene {:d}/{:d}, Id: {}, Accuracy: {:.2f}
'
.
format
(
LOGGER
.
info
(
'
Scene {:d}/{:d}, Id: {}, Accuracy: {:.2f}
'
.
format
(
i
+
1
,
len
(
scene_ids
),
sid
,
accuracy_function
(
prdtcn
,
labels
)))
i
+
1
,
len
(
scene_ids
),
sid
,
accuracy_function
(
prdtcn
,
labels
)))
# save outputs to dictionary
# save outputs to dictionary
...
...
This diff is collapsed.
Click to expand it.
pysegcnn/core/utils.py
+
16
−
16
View file @
391743ad
...
@@ -7,6 +7,7 @@ Created on Tue Jul 14 15:02:23 2020
...
@@ -7,6 +7,7 @@ Created on Tue Jul 14 15:02:23 2020
# builtins
# builtins
import
os
import
os
import
re
import
re
import
logging
import
datetime
import
datetime
# externals
# externals
...
@@ -17,6 +18,9 @@ import numpy as np
...
@@ -17,6 +18,9 @@ import numpy as np
# the following functions are utility functions for common image
# the following functions are utility functions for common image
# manipulation operations
# manipulation operations
# module level logger
LOGGER
=
logging
.
getLogger
(
__name__
)
# this function reads an image to a numpy array
# this function reads an image to a numpy array
def
img2np
(
path
,
tile_size
=
None
,
tile
=
None
,
pad
=
False
,
cval
=
0
,
verbose
=
False
):
def
img2np
(
path
,
tile_size
=
None
,
tile
=
None
,
pad
=
False
,
cval
=
0
,
verbose
=
False
):
...
@@ -36,7 +40,7 @@ def img2np(path, tile_size=None, tile=None, pad=False, cval=0, verbose=False):
...
@@ -36,7 +40,7 @@ def img2np(path, tile_size=None, tile=None, pad=False, cval=0, verbose=False):
width
=
img
.
RasterXSize
width
=
img
.
RasterXSize
elif
path
is
None
:
elif
path
is
None
:
pr
in
t
(
'
Path is of NoneType, returning.
'
)
LOGGER
.
warn
in
g
(
'
Path is of NoneType, returning.
'
)
return
return
# accept numpy arrays as input
# accept numpy arrays as input
...
@@ -81,13 +85,12 @@ def img2np(path, tile_size=None, tile=None, pad=False, cval=0, verbose=False):
...
@@ -81,13 +85,12 @@ def img2np(path, tile_size=None, tile=None, pad=False, cval=0, verbose=False):
y_size
=
height
+
padding
[
0
]
+
padding
[
2
]
y_size
=
height
+
padding
[
0
]
+
padding
[
2
]
x_size
=
width
+
padding
[
1
]
+
padding
[
3
]
x_size
=
width
+
padding
[
1
]
+
padding
[
3
]
if
verbose
:
# print progress
print
(
'
Image size: {}
'
.
format
((
height
,
width
)))
LOGGER
.
debug
(
'
Image size: {}
'
.
format
((
height
,
width
)))
print
(
'
Dividing image into {} tiles of size {} ...
'
LOGGER
.
debug
(
'
Dividing image into {} tiles of size {} ...
'
.
format
(
ntiles
,
(
tile_size
,
tile_size
)))
.
format
(
ntiles
,
(
tile_size
,
tile_size
)))
print
(
'
Padding image: bottom = {}, left = {}, top = {}, right = {}
'
LOGGER
.
debug
(
'
Padding image (b, l, t, r): {}
'
.
format
(
tuple
(
padding
)))
'
...
'
.
format
(
*
list
(
padding
)))
LOGGER
.
debug
(
'
Padded image size: {}
'
.
format
((
y_size
,
x_size
)))
print
(
'
Padded image size: {}
'
.
format
((
y_size
,
x_size
)))
# get the indices of the top left corner for each tile
# get the indices of the top left corner for each tile
topleft
=
tile_topleft_corner
((
y_size
,
x_size
),
tile_size
)
topleft
=
tile_topleft_corner
((
y_size
,
x_size
),
tile_size
)
...
@@ -102,21 +105,18 @@ def img2np(path, tile_size=None, tile=None, pad=False, cval=0, verbose=False):
...
@@ -102,21 +105,18 @@ def img2np(path, tile_size=None, tile=None, pad=False, cval=0, verbose=False):
# iterate over the topleft corners of the tiles
# iterate over the topleft corners of the tiles
for
k
,
corner
in
topleft
.
items
():
for
k
,
corner
in
topleft
.
items
():
if
verbose
:
print
(
'
Creating tile {} with top-left corner {} ...
'
.
format
(
k
,
corner
))
# in case a single tile is required, skip the rest of the tiles
# in case a single tile is required, skip the rest of the tiles
if
tile
is
not
None
:
if
tile
is
not
None
:
if
k
!=
tile
:
if
k
!=
tile
:
if
verbose
:
print
(
'
Skipping tile {} ...
'
.
format
(
k
))
continue
continue
# set the key to 0 for correct array indexing when reading
# set the key to 0 for correct array indexing when reading
# a single tile from the image
# a single tile from the image
if
verbose
:
LOGGER
.
debug
(
'
Processing tile {} ...
'
.
format
(
k
))
print
(
'
Processing tile {} ...
'
.
format
(
k
))
k
=
0
k
=
0
else
:
LOGGER
.
debug
(
'
Creating tile {} with top-left corner {} ...
'
.
format
(
k
,
corner
))
# calculate shift between padded and original image
# calculate shift between padded and original image
row
=
corner
[
0
]
-
padding
[
2
]
if
corner
[
0
]
>
0
else
corner
[
0
]
row
=
corner
[
0
]
-
padding
[
2
]
if
corner
[
0
]
>
0
else
corner
[
0
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment