Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PySegCNN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
PySegCNN
Commits
43be16a9
Commit
43be16a9
authored
4 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Divided the configuration dictionary into sub-dictionaries
parent
9cf318b6
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pysegcnn/main/config.py
+92
-68
92 additions, 68 deletions
pysegcnn/main/config.py
with
92 additions
and
68 deletions
pysegcnn/main/config.py
+
92
−
68
View file @
43be16a9
...
...
@@ -24,26 +24,23 @@ from pysegcnn.core.transforms import Augment, FlipLr, FlipUd, Noise
HERE
=
os
.
path
.
abspath
(
os
.
path
.
dirname
(
__file__
))
# path to the datasets
wd
=
'
C:/Eurac/2020/_Datasets/
'
# wd = '//projectdata.eurac.edu/projects/cci_snow/dfrisinghelli/_Datasets/'
# wd = '/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/_Datasets/'
DATASET_PATH
=
'
C:/Eurac/2020/_Datasets/
'
# DATASET_PATH = '/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/_Datasets/'
# the configuration dictionary
config
=
{
# name of the datasets
DATASET_NAME
=
'
Sparcs
'
# DATASET_NAME = 'Cloud95/Training/'
# DATASET_NAME =' ProSnow/Garmisch/
# the dataset configuration dictionary
dataset_config
=
{
# ------------------------------- Dataset ---------------------------------
# -------------------------------------------------------------------------
# define which dataset to train on
'
dataset_name
'
:
'
Sparcs
'
,
# 'dataset_name': 'Cloud95'
# 'dataset_name': 'Garmisch'
# path to the dataset
'
dataset_path
'
:
os
.
path
.
join
(
wd
,
'
Sparcs/
'
),
# 'dataset_path': os.path.join(wd, 'ProSnow/Garmisch/),
# 'dataset_path': os.path.join(wd, 'Cloud95/Training/'),
'
root_dir
'
:
os
.
path
.
join
(
DATASET_PATH
,
DATASET_NAME
),
# a pattern to match the ground truth file naming convention
'
gt_pattern
'
:
'
*mask.png
'
,
...
...
@@ -70,59 +67,6 @@ config = {
# series data
'
sort
'
:
False
,
# the mode to split the dataset:
#
# - 'random': randomly split the scenes
# for each scene, the tiles can be distributed among the
# training, validation and test set
#
# - 'scene': randomly split the scenes
# for each scene, all the tiles of the scene are included in
# either the training set, the validation set or the test
# set, respectively
#
# - 'date': split the scenes of a dataset based on a date, useful for
# time series data
# scenes before date build the training set, scenes after
# the date build the validation set, the test set is empty
'
split_mode
'
:
'
scene
'
,
# set random seed for reproducibility of the training, validation
# and test data split
# used if split_mode='random' and split_mode='scene'
'
seed
'
:
0
,
# (ttratio * 100) % of the dataset will be used for training and
# validation
# used if split_mode='random' and split_mode='scene'
'
ttratio
'
:
1
,
# (ttratio * tvratio) * 100 % will be used as for training
# (1 - ttratio * tvratio) * 100 % will be used for validation
# used if split_mode='random' and split_mode='scene'
'
tvratio
'
:
0.8
,
# the date to split the scenes
# format: 'yyyymmdd'
# scenes before date build the training set, scenes after the date build
# the validation set, the test set is empty
# used if split_mode='date'
'
date
'
:
'
yyyymmdd
'
,
'
dateformat
'
:
'
%Y%m%d
'
,
# define the batch size
# determines how many samples of the dataset are processed until the
# weights of the network are updated (via mini-batch gradient descent)
'
batch_size
'
:
64
,
# whether to drop samples (during training only) with a fraction of
# pixels equal to the constant padding value cval >= drop
# drop=1 means, do not use a sample if all pixels = cval
# drop=0.8 means, do not use a sample if 80% or more of the pixels are
# equal to cval
# drop=0.2 means, ...
'
drop
'
:
1
,
# whether to artificially increase the training data size using data
# augmentation methods
...
...
@@ -167,13 +111,62 @@ config = {
# FlipUd(p=0.5)
# ]),
# ],
}
# the dataset split configuration dictionary
split_config
=
{
# the mode to split the dataset:
#
# - 'random': randomly split the scenes
# for each scene, the tiles can be distributed among the
# training, validation and test set
#
# - 'scene': randomly split the scenes
# for each scene, all the tiles of the scene are included in
# either the training set, the validation set or the test
# set, respectively
#
# - 'date': split the scenes of a dataset based on a date, useful for
# time series data
# scenes before date build the training set, scenes after
# the date build the validation set, the test set is empty
'
split_mode
'
:
'
scene
'
,
# set random seed for reproducibility of the training, validation
# and test data split
# used if split_mode='random' and split_mode='scene'
'
seed
'
:
0
,
# (ttratio * 100) % of the dataset will be used for training and
# validation
# used if split_mode='random' and split_mode='scene'
'
ttratio
'
:
1
,
# (ttratio * tvratio) * 100 % will be used as for training
# (1 - ttratio * tvratio) * 100 % will be used for validation
# used if split_mode='random' and split_mode='scene'
'
tvratio
'
:
0.8
,
# the date to split the scenes
# format: 'yyyymmdd'
# scenes before date build the training set, scenes after the date build
# the validation set, the test set is empty
# used if split_mode='date'
'
date
'
:
'
yyyymmdd
'
,
'
dateformat
'
:
'
%Y%m%d
'
,
}
# the model configuration dictionary
model_config
=
{
# ------------------------------ Network ----------------------------------
# -------------------------------------------------------------------------
# define the model
'
net
'
:
UNet
,
'
model
'
:
UNet
,
# define the number of filters for each convolutional layer
# the number of filters should increase with depth
...
...
@@ -189,6 +182,12 @@ config = {
'
dilation
'
:
1
# the field of view of the kernel
},
}
# the training configuration dictionary
training_config
=
{
# ----------------------------- Training ---------------------------------
# -------------------------------------------------------------------------
...
...
@@ -215,7 +214,7 @@ config = {
# Training ----------------------------------------------------------------
# whether to resume training from an existing model checkpoint
'
checkpoint
'
:
Fals
e
,
'
checkpoint
'
:
Tru
e
,
# whether to early stop training if the accuracy on the validation set
# does not increase more than delta over patience epochs
...
...
@@ -224,6 +223,19 @@ config = {
'
delta
'
:
0
,
'
patience
'
:
10
,
# whether to drop samples (during training only) with a fraction of
# pixels equal to the constant padding value cval >= drop
# drop=1 means, do not use a sample if all pixels = cval
# drop=0.8 means, do not use a sample if 80% or more of the pixels are
# equal to cval
# drop=0.2 means, ...
'
drop
'
:
1
,
# define the batch size
# determines how many samples of the dataset are processed until the
# weights of the network are updated (via mini-batch gradient descent)
'
batch_size
'
:
64
,
# define the number of epochs: the number of maximum iterations over
# the whole training dataset
'
epochs
'
:
200
,
...
...
@@ -240,6 +252,11 @@ config = {
# define the learning rate
'
lr
'
:
0.001
,
}
# the evaluation configuration file
evaluation_config
=
{
# ----------------------------- Evaluation --------------------------------
# -------------------------------------------------------------------------
...
...
@@ -280,3 +297,10 @@ config = {
'
plot_bands
'
:
[
'
nir
'
,
'
red
'
,
'
green
'
],
}
# the complete configuration
config
=
{
**
dataset_config
,
**
split_config
,
**
model_config
,
**
training_config
,
**
evaluation_config
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment