Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PySegCNN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
PySegCNN
Commits
46fec41a
Commit
46fec41a
authored
4 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Adjusted prediction modules to changes in core.trainer.py
parent
fc9b837e
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
pysegcnn/core/predict.py
+5
-23
5 additions, 23 deletions
pysegcnn/core/predict.py
pysegcnn/main/eval.py
+14
-31
14 additions, 31 deletions
pysegcnn/main/eval.py
with
19 additions
and
54 deletions
pysegcnn/core/predict.py
+
5
−
23
View file @
46fec41a
...
...
@@ -31,8 +31,7 @@ def get_scene_tiles(ds, scene_id):
return
indices
def
predict_samples
(
ds
,
model
,
optimizer
,
state_file
,
cm
=
False
,
plot
=
False
,
**
kwargs
):
def
predict_samples
(
ds
,
model
,
cm
=
False
,
plot
=
False
,
**
kwargs
):
# check whether the dataset is a valid subset, i.e.
# an instance of pysegcnn.core.split.SceneSubset or
...
...
@@ -41,24 +40,16 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
raise
TypeError
(
'
ds should be an instance of {} or of {}.
'
.
format
(
repr
(
RandomSubset
),
repr
(
SceneSubset
)))
# convert state file to pathlib.Path object
state_file
=
pathlib
.
Path
(
state_file
)
# the device to compute on, use gpu if available
device
=
torch
.
device
(
"
cuda:0
"
if
torch
.
cuda
.
is_available
()
else
"
cpu
"
)
# load the pretrained model state
if
not
state_file
.
exists
():
raise
FileNotFoundError
(
'
{} does not exist.
'
.
format
(
state_file
))
_
=
model
.
load
(
state_file
.
name
,
optimizer
,
state_file
.
parent
)
# set the model to evaluation mode
LOGGER
.
info
(
'
Setting model to evaluation mode ...
'
)
model
.
eval
()
model
.
to
(
device
)
# base filename for each sample
fname
=
state_file
.
name
.
split
(
'
.pt
'
)[
0
]
fname
=
model
.
state_file
.
name
.
split
(
'
.pt
'
)[
0
]
# initialize confusion matrix
cmm
=
np
.
zeros
(
shape
=
(
model
.
nclasses
,
model
.
nclasses
))
...
...
@@ -107,8 +98,7 @@ def predict_samples(ds, model, optimizer, state_file, cm=False,
return
output
,
cmm
def
predict_scenes
(
ds
,
model
,
optimizer
,
state_file
,
scene_id
=
None
,
cm
=
False
,
plot_scenes
=
False
,
**
kwargs
):
def
predict_scenes
(
ds
,
model
,
scene_id
=
None
,
cm
=
False
,
plot
=
False
,
**
kwargs
):
# check whether the dataset is a valid subset, i.e. an instance of
# pysegcnn.core.split.SceneSubset
...
...
@@ -116,24 +106,16 @@ def predict_scenes(ds, model, optimizer, state_file,
raise
TypeError
(
'
ds should be an instance of {}.
'
.
format
(
repr
(
SceneSubset
)))
# convert state file to pathlib.Path object
state_file
=
pathlib
.
Path
(
state_file
)
# the device to compute on, use gpu if available
device
=
torch
.
device
(
"
cuda:0
"
if
torch
.
cuda
.
is_available
()
else
"
cpu
"
)
# load the pretrained model state
if
not
state_file
.
exists
():
raise
FileNotFoundError
(
'
{} does not exist.
'
.
format
(
state_file
))
_
=
model
.
load
(
state_file
.
name
,
optimizer
,
state_file
.
parent
)
# set the model to evaluation mode
LOGGER
.
info
(
'
Setting model to evaluation mode ...
'
)
model
.
eval
()
model
.
to
(
device
)
# base filename for each scene
fname
=
state_file
.
name
.
split
(
'
.pt
'
)[
0
]
fname
=
model
.
state_file
.
name
.
split
(
'
.pt
'
)[
0
]
# initialize confusion matrix
cmm
=
np
.
zeros
(
shape
=
(
model
.
nclasses
,
model
.
nclasses
))
...
...
@@ -196,7 +178,7 @@ def predict_scenes(ds, model, optimizer, state_file,
scenes
[
sid
]
=
{
'
input
'
:
inputs
,
'
labels
'
:
labels
,
'
prediction
'
:
prdtcn
}
# plot current scene
if
plot
_scenes
:
if
plot
:
fig
,
ax
=
plot_sample
(
inputs
.
clip
(
0
,
1
),
labels
,
ds
.
dataset
.
use_bands
,
...
...
This diff is collapsed.
Click to expand it.
pysegcnn/main/eval.py
+
14
−
31
View file @
46fec41a
...
...
@@ -9,7 +9,7 @@ import os
# locals
from
pysegcnn.core.trainer
import
(
DatasetConfig
,
SplitConfig
,
ModelConfig
,
Train
Config
,
EvalConfig
)
State
Config
,
EvalConfig
)
from
pysegcnn.core.predict
import
predict_samples
,
predict_scenes
from
pysegcnn.main.config
import
(
dataset_config
,
split_config
,
model_config
,
train_config
,
eval_config
,
HERE
)
...
...
@@ -22,24 +22,21 @@ if __name__ == '__main__':
dc
=
DatasetConfig
(
**
dataset_config
)
sc
=
SplitConfig
(
**
split_config
)
mc
=
ModelConfig
(
**
model_config
)
tc
=
TrainConfig
(
**
train_config
)
ec
=
EvalConfig
(
**
eval_config
)
# (ii) instanciate the dataset
ds
=
dc
.
init_dataset
()
ds
# (iii) instanciate the training, validation and test datasets
train_ds
,
valid_ds
,
test_ds
=
sc
.
train_val_test_split
(
ds
)
# (iv) instanciate the model state files
state_file
,
loss_state
=
mc
.
init_state
(
ds
,
sc
,
tc
)
# (iv) instanciate the model state
state
=
StateConfig
(
ds
,
sc
,
mc
)
state_file
,
loss_state
=
state
.
init_state
()
# (v) instanciate the model
model
=
mc
.
init_model
(
ds
)
# (vi) instanciate the optimizer
optimizer
=
tc
.
init_optimizer
(
model
)
# (vii) load pretrained model weights
model
,
_
=
mc
.
load_pretrained
(
state_file
)
model
.
state_file
=
state_file
# plot loss and accuracy
plot_loss
(
loss_state
,
outpath
=
os
.
path
.
join
(
HERE
,
'
_graphics/
'
))
...
...
@@ -54,37 +51,23 @@ if __name__ == '__main__':
# keyword arguments for plotting
kwargs
=
{
'
bands
'
:
ec
.
plot_bands
,
'
outpath
'
:
os
.
path
.
join
(
HERE
,
'
_scenes/
'
),
'
stretch
'
:
True
,
'
alpha
'
:
5
}
'
alpha
'
:
ec
.
alpha
,
'
figsize
'
:
ec
.
figsize
}
# whether to predict each sample or each scene individually
if
ec
.
predict_scene
:
# reconstruct and predict the scenes in the validation/test set
scenes
,
cm
=
predict_scenes
(
ds
,
model
,
optimizer
,
state_file
,
scene_id
=
None
,
cm
=
ec
.
cm
,
plot_scenes
=
ec
.
plot_scenes
,
**
kwargs
)
scenes
,
cm
=
predict_scenes
(
ds
,
model
,
scene_id
=
None
,
cm
=
ec
.
cm
,
plot
=
ec
.
plot_scenes
,
**
kwargs
)
else
:
# predict the samples in the validation/test set
samples
,
cm
=
predict_samples
(
ds
,
model
,
optimizer
,
state_file
,
cm
=
ec
.
cm
,
plot_scenes
=
ec
.
plot_scenes
,
**
kwargs
)
samples
,
cm
=
predict_samples
(
ds
,
model
,
cm
=
ec
.
cm
,
plot
=
ec
.
plot_samples
,
**
kwargs
)
# whether to plot the confusion matrix
if
ec
.
cm
:
plot_confusion_matrix
(
cm
,
ds
.
dataset
.
labels
,
normalize
=
True
,
plot_confusion_matrix
(
cm
,
ds
.
dataset
.
labels
,
state
=
state_file
.
name
.
replace
(
'
.pt
'
,
'
.png
'
),
outpath
=
os
.
path
.
join
(
HERE
,
'
_graphics/
'
)
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment