Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PySegCNN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
PySegCNN
Commits
4759b699
Commit
4759b699
authored
4 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Major refactor: using distinct module core/predict.py
parent
fba8965e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pysegcnn/main/eval.py
+55
-136
55 additions, 136 deletions
pysegcnn/main/eval.py
with
55 additions
and
136 deletions
pysegcnn/main/eval.py
+
55
−
136
View file @
4759b699
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 15:57:01 2020
@author: Daniel
"""
# builtins
from
__future__
import
absolute_import
import
os
# externals
import
numpy
as
np
import
torch
from
torch.utils.data
import
DataLoader
from
torch.utils.data.dataset
import
Subset
import
torch.nn.functional
as
F
# locals
from
pysegcnn.core.dataset
import
StandardEoDataset
from
pysegcnn.core.trainer
import
NetworkTrainer
from
pysegcnn.core.utils
import
reconstruct_scene
from
pysegcnn.core.graphics
import
(
plot_confusion_matrix
,
plot_loss
,
plot_sample
)
from
pysegcnn.main.config
import
config
from
pysegcnn.core.predict
import
predict_samples
,
predict_scenes
from
pysegcnn.core.config
import
config
,
HERE
from
pysegcnn.core.graphics
import
plot_confusion_matrix
,
plot_loss
if
__name__
==
'
__main__
'
:
...
...
@@ -24,127 +20,50 @@ if __name__ == '__main__':
trainer
=
NetworkTrainer
(
config
)
trainer
# load pretrained model
state
=
trainer
.
model
.
load
(
trainer
.
state_file
,
trainer
.
optimizer
,
trainer
.
state_path
)
trainer
.
model
.
eval
()
if
trainer
.
plot_cm
:
# predict each batch in the validation/test set
cm
,
accuracy
,
loss
=
trainer
.
predict
(
pretrained
=
True
,
confusion
=
True
)
# plot confusion matrix: labels of the dataset
labels
=
[
label
[
'
label
'
]
for
label
in
trainer
.
dataset
.
labels
.
values
()]
plot_confusion_matrix
(
cm
,
labels
,
state
=
trainer
.
state_file
)
# plot loss and accuracy
plot_loss
(
trainer
.
loss_state
)
# whether to plot the samples of the validation/test dataset
if
trainer
.
plot_samples
:
# base filename for each sample
fname
=
trainer
.
state_file
.
split
(
'
.pt
'
)[
0
]
# set random seed for reproducibility
np
.
random
.
seed
(
trainer
.
seed
)
# plot samples from the validation or test dataset
dataset
=
trainer
.
test_ds
if
trainer
.
test
else
trainer
.
valid_ds
dname
=
'
test
'
if
trainer
.
test
else
'
val
'
# draw a number of samples from the validation/test set
samples
=
np
.
arange
(
0
,
len
(
dataset
))
if
trainer
.
nsamples
>
0
:
samples
=
np
.
random
.
randint
(
len
(
dataset
),
size
=
min
(
trainer
.
nsamples
,
len
(
dataset
)))
# iterate over the samples and plot inputs, ground truth and
# model predictions
for
sample
in
samples
:
# a sample from the validation/test set
inputs
,
labels
=
dataset
[
sample
]
# convert to net input shape
net_inputs
=
torch
.
tensor
(
np
.
expand_dims
(
inputs
,
axis
=
0
))
# compute model predictions
with
torch
.
no_grad
():
y_pred
=
F
.
softmax
(
trainer
.
model
(
net_inputs
),
dim
=
1
).
argmax
(
dim
=
1
).
squeeze
()
# plot inputs, ground truth and model predictions
sname
=
fname
+
'
_{}_sample_{}.pt
'
.
format
(
dname
,
sample
)
fig
,
ax
=
plot_sample
(
inputs
.
numpy
().
clip
(
0
,
1
),
labels
,
trainer
.
dataset
.
use_bands
,
trainer
.
dataset
.
labels
,
y_pred
=
y_pred
,
bands
=
trainer
.
plot_bands
,
state
=
sname
,
stretch
=
True
,
alpha
=
5
)
# whether to plot the reconstructed scenes
if
trainer
.
plot_scenes
:
# base filename for each scene
fname
=
trainer
.
state_file
.
split
(
'
.pt
'
)[
0
]
# only supported if the dataset is a StandardEoDataset
if
not
isinstance
(
trainer
.
dataset
,
StandardEoDataset
):
print
(
'
Reconstruction of entire scenes only supported for
'
'
datasets of type {}. Aborting ...
'
.
format
(
StandardEoDataset
.
__name__
))
# get the names of the scenes
scene_ids
=
[
s
for
s
in
os
.
listdir
(
trainer
.
dataset
.
root
)
if
trainer
.
dataset
.
parse_scene_id
(
s
)
is
not
None
]
# spatial size of scene
scene_size
=
(
trainer
.
dataset
.
height
,
trainer
.
dataset
.
width
)
# iterate over the scenes
for
sid
in
scene_ids
:
# filename for the current scene
sname
=
fname
+
'
_
'
+
sid
+
'
.pt
'
# get the tiles of the scene
tiles
=
trainer
.
_get_scene_tiles
(
sid
)
tiles
.
sort
(
key
=
lambda
k
:
k
[
'
idx
'
])
# create a subset of the dataset
scene_ds
=
Subset
(
trainer
.
dataset
,
indices
=
[
t
[
'
idx
'
]
for
t
in
tiles
])
# create the dataloader
scene_dl
=
DataLoader
(
scene_ds
,
batch_size
=
len
(
scene_ds
),
shuffle
=
False
)
# predict the current scene
for
i
,
(
inp
,
lab
)
in
enumerate
(
scene_dl
):
print
(
'
Predicting scene: {}
'
.
format
(
sid
))
# apply forward pass: model prediction
with
torch
.
no_grad
():
prd
=
F
.
softmax
(
trainer
.
model
(
inp
),
dim
=
1
).
argmax
(
dim
=
1
).
squeeze
()
# reconstruct the entire scene
inputs
=
reconstruct_scene
(
inp
,
scene_size
,
nbands
=
inp
.
shape
[
1
])
labels
=
reconstruct_scene
(
lab
,
scene_size
,
nbands
=
1
)
prdtcn
=
reconstruct_scene
(
prd
,
scene_size
,
nbands
=
1
)
# plot current scene
fig
,
ax
=
plot_sample
(
inputs
.
clip
(
0
,
1
),
labels
,
trainer
.
dataset
.
use_bands
,
trainer
.
dataset
.
labels
,
y_pred
=
prdtcn
,
bands
=
trainer
.
plot_bands
,
state
=
sname
,
stretch
=
True
,
alpha
=
5
)
plot_loss
(
trainer
.
loss_state
,
outpath
=
os
.
path
.
join
(
HERE
,
'
_graphics/
'
))
# check whether to evaluate the model on the validation set or the test set
ds
=
trainer
.
test_ds
if
trainer
.
test
else
trainer
.
valid_ds
# whether to predict each sample or each scene individually
if
trainer
.
predict_scene
:
# reconstruct and predict the scenes in the validation/test set
scenes
,
cm
=
predict_scenes
(
ds
,
trainer
.
model
,
trainer
.
optimizer
,
trainer
.
state_path
,
trainer
.
state_file
,
None
,
trainer
.
cm
,
trainer
.
plot_scenes
,
bands
=
trainer
.
plot_bands
,
outpath
=
os
.
path
.
join
(
HERE
,
'
_samples/
'
),
stretch
=
True
,
alpha
=
5
)
else
:
# predict the samples in the validation/test set
samples
,
cm
=
predict_samples
(
ds
,
trainer
.
model
,
trainer
.
optimizer
,
trainer
.
state_path
,
trainer
.
state_file
,
trainer
.
nsamples
,
trainer
.
seed
,
trainer
.
batch_size
,
trainer
.
cm
,
trainer
.
plot_samples
,
bands
=
trainer
.
plot_bands
,
outpath
=
os
.
path
.
join
(
HERE
,
'
_samples/
'
),
stretch
=
True
,
alpha
=
5
)
# whether to plot the confusion matrix
if
trainer
.
cm
:
plot_confusion_matrix
(
cm
,
ds
.
dataset
.
labels
,
normalize
=
True
,
state
=
trainer
.
state_file
,
outpath
=
os
.
path
.
join
(
HERE
,
'
_graphics/
'
)
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment