Skip to content
Snippets Groups Projects
Commit 6dc8445c authored by Frisinghelli Daniel's avatar Frisinghelli Daniel
Browse files

Operational settings.

parent 46205d1e
No related branches found
No related tags found
No related merge requests found
......@@ -22,7 +22,8 @@ import pathlib
# path to the datasets on the current machine
# DRIVE_PATH = pathlib.Path('C:/Eurac/Projects/CCISNOW/Datasets/')
# DRIVE_PATH = pathlib.Path('/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/Datasets/') # nopep8
DRIVE_PATH = pathlib.Path('/home/dfrisinghelli/Datasets')
# DRIVE_PATH = pathlib.Path('/home/dfrisinghelli/Datasets')
DRIVE_PATH = pathlib.Path('/localscratch/dfrisinghelli_eurac/Datasets/')
# name and paths to the datasets
DATASETS = {'Sparcs': DRIVE_PATH.joinpath('Sparcs'),
......@@ -33,10 +34,10 @@ DATASETS = {'Sparcs': DRIVE_PATH.joinpath('Sparcs'),
TRG_DS = 'Sparcs'
# spectral bands to use for evaluation
BANDS = ['red', 'green', 'blue']
BANDS = ['red', 'green', 'blue', 'nir', 'swir1', 'swir2']
# tile size of a single sample
TILE_SIZE = 64
TILE_SIZE = 256
# the target dataset configuration dictionary
trg_ds = {
......@@ -65,6 +66,6 @@ trg_ds_split = {
'seed': 0,
'shuffle': True,
'ttratio': 1,
'tvratio': 0.95,
'tvratio': 0.05,
}
......@@ -32,7 +32,9 @@ HERE = pathlib.Path(__file__).resolve().parent
# DRIVE_PATH = pathlib.Path('C:/Eurac/Projects/CCISNOW/Datasets/')
# DRIVE_PATH = pathlib.Path('/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/Datasets/') # nopep8
# DRIVE_PATH = pathlib.Path('/home/dfrisinghelli/Datasets/')
DRIVE_PATH = pathlib.Path('/home/clusterusers/dfrisinghelli_eurac/Datasets/')
# DRIVE_PATH = pathlib.Path('/home/clusterusers/dfrisinghelli_eurac/Datasets/')
# DRIVE_PATH = pathlib.Path('/scratch/dfrisinghelli_eurac/Datasets/')
DRIVE_PATH = pathlib.Path('/localscratch/dfrisinghelli_eurac/Datasets/')
# name and paths to the datasets
DATASETS = {'Sparcs': DRIVE_PATH.joinpath('Sparcs'),
......@@ -40,13 +42,13 @@ DATASETS = {'Sparcs': DRIVE_PATH.joinpath('Sparcs'),
}
# name of the dataset
DS_NAME = 'Sparcs'
DS_NAME = 'Alcd'
# spectral bands to use for training
BANDS = ['red', 'green', 'blue']
BANDS = ['red', 'green', 'blue', 'nir', 'swir1', 'swir2']
# tile size of a single sample
TILE_SIZE = 128
TILE_SIZE = 256
# number of folds for cross validation
K_FOLDS = 10
......@@ -65,8 +67,8 @@ ds_config = {
'root_dir': DATASETS[DS_NAME],
# a regex pattern to match the ground truth file naming convention
'gt_pattern': '(.*)mask\\.png',
# 'gt_pattern': '(.*)class\\.img',
# 'gt_pattern': '(.*)mask\\.png',
'gt_pattern': '(.*)Labels\\.tif',
# define the bands to use to train the segmentation network:
# either a list of bands, e.g. ['red', 'green', 'nir', 'swir2', ...]
......@@ -140,8 +142,10 @@ ds_config = {
# values are the corresponding labels to be mapped to.
# NOTE: Passing an empty dictionary means all labels are preserved as is
# 'merge_labels': {}
'merge_labels': {'Shadow_over_water': 'Shadow',
'Flooded': 'Land'}
# 'merge_labels': {'Shadow_over_water': 'Shadow',
# 'Flooded': 'Land'}
'merge_labels': {'Cirrus': 'Cloud',
'Not_used': 'No_data'},
# EXAMPLE: merge label class 'Shadow over Water' to label class 'Shadow'
# 'merge_labels': {'Shadow_over_water': 'Shadow'}
......@@ -236,7 +240,7 @@ model_config = {
# define the batch size
# determines how many samples of the dataset are processed until the
# weights of the network are updated (via mini-batch gradient descent)
'batch_size': 256,
'batch_size': 64,
# the seed for the random number generator intializing the network weights
'torch_seed': 0,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment