Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PySegCNN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
PySegCNN
Commits
90a211a4
Commit
90a211a4
authored
4 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Preparing to split transfer learning to dedicated training script.
parent
53373694
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
pysegcnn/main/config.py
+38
-46
38 additions, 46 deletions
pysegcnn/main/config.py
pysegcnn/main/train.py
+0
-126
0 additions, 126 deletions
pysegcnn/main/train.py
with
38 additions
and
172 deletions
pysegcnn/main/config.py
+
38
−
46
View file @
90a211a4
...
...
@@ -28,7 +28,7 @@ HERE = pathlib.Path(__file__).resolve().parent
# path to the datasets on the current machine
DRIVE_PATH
=
pathlib
.
Path
(
'
C:/Eurac/Projects/CCISNOW/_Datasets/
'
)
# DRIVE_PATH = pathlib.Path('/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/_Datasets/')
# DRIVE_PATH = pathlib.Path('/mnt/CEPH_PROJECTS/cci_snow/dfrisinghelli/_Datasets/')
# nopep8
# name and paths to the datasets
DATASETS
=
{
'
Sparcs
'
:
DRIVE_PATH
.
joinpath
(
'
Sparcs
'
),
...
...
@@ -47,6 +47,9 @@ BANDS = ['red', 'green', 'blue', 'nir', 'swir1', 'swir2']
# tile size of a single sample
TILE_SIZE
=
128
# number of folds for cross validation
K_FOLDS
=
2
# the source dataset configuration dictionary
src_ds_config
=
{
...
...
@@ -81,11 +84,6 @@ src_ds_config = {
# 'pad': False,
'
pad
'
:
True
,
# the random seed for the numpy random number generator
# ensures reproducibility of the training, validation and test data split
# used if split_mode='random' and split_mode='scene'
'
seed
'
:
0
,
# whether to sort the dataset in chronological order, useful for time
# series data
# 'sort': True,
...
...
@@ -156,11 +154,11 @@ trg_ds_config = {
'
bands
'
:
BANDS
,
'
tile_size
'
:
TILE_SIZE
,
'
pad
'
:
True
,
'
seed
'
:
0
,
'
sort
'
:
True
,
'
transforms
'
:
[],
'
merge_labels
'
:
{
'
Cirrus
'
:
'
Cloud
'
,
'
Not_used
'
:
'
No_data
'
}
}
# the source dataset split configuration dictionary
...
...
@@ -172,64 +170,58 @@ src_split_config = {
# the mode to split the dataset:
#
# - 'random': randomly split the scenes
# for each scene, the tiles can be distributed among the
# - 'tile': for each scene, the tiles can be distributed among the
# training, validation and test set
#
# - 'scene': randomly split the scenes
# for each scene, all the tiles of the scene are included in
# - 'scene': for each scene, all the tiles of the scene are included in
# either the training set, the validation set or the test
# set, respectively
#
# - 'date': split the scenes of a dataset based on a date, useful for
# time series data
# scenes before date build the training set, scenes after
# the date build the validation set, the test set is empty
# 'split_mode': 'date',
# 'split_mode': 'random',
# 'split_mode': 'tile',
'
split_mode
'
:
'
scene
'
,
# the number of folds for cross validation
#
# k_folds = 1 : The model is trained with a single dataset split based on
# 'tvratio' and 'ttratio'
# k_folds > 1 : The model is trained via cross validation on k_folds splits
# of the dataset
'
k_folds
'
:
K_FOLDS
,
# the random seed for the random number generator
# ensures reproducibility of the training, validation and test data split
'
seed
'
:
0
,
# whether to shuffle the data before splitting
'
shuffle
'
:
True
,
# -------------------------------------------------------------------------
# IMPORTANT: these setting only apply if 'kfolds=1'
# -------------------------------------------------------------------------
# (ttratio * 100) % of the dataset will be used for training and
# validation
# used if
split_mode='random' and split_mode='scene
'
# used if
'kfolds=1
'
'
ttratio
'
:
1
,
# (ttratio * tvratio) * 100 % will be used for training
# (1 - ttratio * tvratio) * 100 % will be used for validation
# used if
split_mode='random' and split_mode='scene
'
# used if
'kfolds=1
'
'
tvratio
'
:
0.8
,
# the date to split the scenes
# format: 'yyyymmdd'
# scenes before date build the training set, scenes after the date build
# the validation set, the test set is empty
# used if split_mode='date'
'
date
'
:
''
,
'
dateformat
'
:
'
%Y%m%d
'
,
# whether to drop samples (during training only) with a fraction of
# pixels equal to the constant padding value cval >= drop
# drop=1 means, do not use a sample if all pixels = cval
# drop=0.8 means, do not use a sample if 80% or more of the pixels are
# equal to cval
# drop=0.2 means, ...
# drop=0 means, do not drop any samples
'
drop
'
:
0
,
}
}
# the target dataset split configuration dictionary
trg_split_config
=
{
# 'split_mode': 'date',
# 'split_mode': 'random',
# 'split_mode': 'tile',
'
split_mode
'
:
'
scene
'
,
'
k_folds
'
:
K_FOLDS
,
'
seed
'
:
0
,
'
shuffle
'
:
True
,
'
ttratio
'
:
1
,
'
tvratio
'
:
0.8
,
'
date
'
:
''
,
'
dateformat
'
:
'
%Y%m%d
'
,
'
drop
'
:
0
,
}
}
# the model configuration dictionary
model_config
=
{
...
...
@@ -302,8 +294,8 @@ tlda_config = {
# whether to apply any sort of transfer learning
# if transfer=False, the model is only trained on the source dataset
'
transfer
'
:
True
,
#
'transfer': False,
#
'transfer': True,
'
transfer
'
:
False
,
# Supervised vs. Unsupervised ---------------------------------------------
# -------------------------------------------------------------------------
...
...
This diff is collapsed.
Click to expand it.
pysegcnn/main/train.py
deleted
100644 → 0
+
0
−
126
View file @
53373694
"""
Main script to train a model.
Steps to launch a model run:
1. Configure the model run in :py:mod:`pysegcnn.main.config.py`
- configure the dataset(s): ``src_ds_config`` and ``trg_ds_config``
- configure the split(s) : ``src_ds_config`` and ``trg_ds_config``
- configure the model : ``model_config``
2. Save :py:mod:`pysegcnn.main.config.py`
3. In a terminal, navigate to the repository
'
s root directory
4. Run
.. code-block:: bash
python pysegcnn/main/train.py
License
-------
Copyright (c) 2020 Daniel Frisinghelli
This source code is licensed under the GNU General Public License v3.
See the LICENSE file in the repository
'
s root directory.
"""
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# builtins
from
logging.config
import
dictConfig
# locals
from
pysegcnn.core.trainer
import
(
DatasetConfig
,
SplitConfig
,
ModelConfig
,
TransferLearningConfig
,
StateConfig
,
LogConfig
,
DomainAdaptationTrainer
)
from
pysegcnn.main.config
import
(
src_ds_config
,
src_split_config
,
trg_ds_config
,
trg_split_config
,
model_config
,
tlda_config
)
from
pysegcnn.core.logging
import
log_conf
if
__name__
==
'
__main__
'
:
# (i) instanciate the source domain configurations
src_dc
=
DatasetConfig
(
**
src_ds_config
)
# source domain dataset
src_sc
=
SplitConfig
(
**
src_split_config
)
# source domain dataset split
# (ii) instanciate the target domain configuration
trg_dc
=
DatasetConfig
(
**
trg_ds_config
)
# target domain dataset
trg_sc
=
SplitConfig
(
**
trg_split_config
)
# target domain dataset split
# (iii) instanciate the model configuration
net_mc
=
ModelConfig
(
**
model_config
)
# (iv) instanciate the transfer learning configuration
trn_sf
=
TransferLearningConfig
(
**
tlda_config
)
# (v) instanciate the model state file
net_sc
=
StateConfig
(
src_dc
,
src_sc
,
trg_dc
,
trg_sc
,
net_mc
,
trn_sf
)
state_file
=
net_sc
.
init_state
()
# (vi) instanciate logging configuration
net_lc
=
LogConfig
(
state_file
)
dictConfig
(
log_conf
(
net_lc
.
log_file
))
# (vii) instanciate the datasets to train the model on
src_ds
=
src_dc
.
init_dataset
()
trg_ds
=
trg_dc
.
init_dataset
()
# (viii) instanciate the training, validation and test datasets and
# dataloaders for the source domain
src_tra_ds
,
src_val_ds
,
src_tes_ds
=
src_sc
.
train_val_test_split
(
src_ds
)
src_tra_dl
,
src_val_dl
,
src_tes_dl
=
src_sc
.
dataloaders
(
src_tra_ds
,
src_val_ds
,
src_tes_ds
,
batch_size
=
net_mc
.
batch_size
,
shuffle
=
True
,
drop_last
=
False
)
# (ix) instanciate the training, validation and test datasets and
# dataloaders dor the target domain
trg_tra_ds
,
trg_val_ds
,
trg_tes_ds
=
trg_sc
.
train_val_test_split
(
trg_ds
)
trg_tra_dl
,
trg_val_dl
,
trg_tes_dl
=
trg_sc
.
dataloaders
(
trg_tra_ds
,
trg_val_ds
,
trg_tes_ds
,
batch_size
=
net_mc
.
batch_size
,
shuffle
=
True
,
drop_last
=
False
)
# (x) instanciate the model
if
trn_sf
.
transfer
and
(
trn_sf
.
supervised
or
trn_sf
.
uda_from_pretrained
):
# check whether to load a pretrained model for (un)supervised transfer
# learning
net
,
optimizer
,
checkpoint
=
trn_sf
.
transfer_model
(
trn_sf
.
pretrained_path
,
nclasses
=
len
(
src_ds
).
labels
,
optim_kwargs
=
net_mc
.
optim_kwargs
,
freeze
=
trn_sf
.
freeze
)
else
:
# initialize model from scratch or from an existing model checkpoint
net
,
optimizer
,
checkpoint
=
net_mc
.
init_model
(
len
(
src_ds
.
use_bands
),
len
(
src_ds
.
labels
),
state_file
)
# (xi) instanciate the network trainer class
trainer
=
DomainAdaptationTrainer
(
model
=
net
,
optimizer
=
optimizer
,
state_file
=
net
.
state_file
,
src_train_dl
=
src_tra_dl
,
src_valid_dl
=
src_val_dl
,
src_test_dl
=
src_tes_dl
,
epochs
=
net_mc
.
epochs
,
nthreads
=
net_mc
.
nthreads
,
early_stop
=
net_mc
.
early_stop
,
mode
=
net_mc
.
mode
,
delta
=
net_mc
.
delta
,
patience
=
net_mc
.
patience
,
checkpoint_state
=
checkpoint
,
save
=
net_mc
.
save
,
supervised
=
trn_sf
.
supervised
,
trg_train_dl
=
trg_tra_dl
,
trg_valid_dl
=
trg_val_dl
,
trg_test_dl
=
trg_tes_dl
,
uda_loss_function
=
trn_sf
.
uda_loss_function
,
uda_lambda
=
trn_sf
.
uda_lambda
,
uda_pos
=
trn_sf
.
uda_pos
)
# (xi) train the model
# training_state = trainer.train()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment