Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PySegCNN
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
PySegCNN
Commits
a2f71786
Commit
a2f71786
authored
4 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Improved functionality of generic Network class
parent
eac2851e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pysegcnn/core/models.py
+47
-25
47 additions, 25 deletions
pysegcnn/core/models.py
with
47 additions
and
25 deletions
pysegcnn/core/models.py
+
47
−
25
View file @
a2f71786
...
...
@@ -9,6 +9,7 @@ Created on Fri Jun 26 16:31:36 2020
import
os
import
enum
import
logging
import
pathlib
# externals
import
numpy
as
np
...
...
@@ -29,6 +30,9 @@ class Network(nn.Module):
def
__init__
(
self
):
super
().
__init__
()
# initialize state file
self
.
state_file
=
None
def
freeze
(
self
):
for
param
in
self
.
parameters
():
param
.
requires_grad
=
False
...
...
@@ -37,22 +41,22 @@ class Network(nn.Module):
for
param
in
self
.
parameters
():
param
.
requires_grad
=
True
def
save
(
self
,
state_file
,
optimizer
,
bands
=
None
,
outpath
=
os
.
path
.
join
(
os
.
getcwd
(),
'
_models/
'
)):
def
save
(
self
,
state_file
,
optimizer
,
bands
=
None
,
**
kwargs
):
# check if the output path exists and if not, create it
if
not
os
.
path
.
isdir
(
outpath
):
os
.
makedirs
(
outpath
,
exist_ok
=
True
)
state_file
=
pathlib
.
Path
(
state_file
)
if
not
state_file
.
parent
.
is_dir
():
state_file
.
parent
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
# initialize dictionary to store network parameters
model_state
=
{}
# store model name
model_state
[
'
cls
'
]
=
self
.
__class__
model_state
=
{
**
kwargs
}
# store the bands the model
wa
s trained with
# store the
spectral
bands the model
i
s trained with
model_state
[
'
bands
'
]
=
bands
# store model class
model_state
[
'
cls
'
]
=
self
.
__class__
# store construction parameters to instanciate the network
model_state
[
'
params
'
]
=
{
'
skip
'
:
self
.
skip
,
...
...
@@ -62,7 +66,7 @@ class Network(nn.Module):
}
# store optional keyword arguments
model_state
[
'
kwarg
s
'
]
=
self
.
kwargs
model_state
[
'
param
s
'
]
=
{
**
model_state
[
'
params
'
],
**
self
.
kwargs
}
# store model epoch
model_state
[
'
epoch
'
]
=
self
.
epoch
...
...
@@ -72,30 +76,48 @@ class Network(nn.Module):
model_state
[
'
optim_state_dict
'
]
=
optimizer
.
state_dict
()
# model state dictionary stores the values of all trainable parameters
state
=
os
.
path
.
join
(
outpath
,
state_file
)
torch
.
save
(
model_state
,
state
)
LOGGER
.
info
(
'
Network parameters saved in {}
'
.
format
(
state
))
torch
.
save
(
model_state
,
state_file
)
LOGGER
.
info
(
'
Network parameters saved in {}
'
.
format
(
state_file
))
return
state
return
state
_file
def
load
(
self
,
state_file
,
optimizer
=
None
,
inpath
=
os
.
path
.
join
(
os
.
getcwd
(),
'
_models/
'
)
):
@staticmethod
def
load
(
state_file
,
optimizer
=
None
):
# load the model state file
state
=
os
.
path
.
join
(
inpath
,
state_file
)
model_state
=
torch
.
load
(
state
)
# load the pretrained model
state_file
=
pathlib
.
Path
(
state_file
)
if
not
state_file
.
exists
():
raise
FileNotFoundError
(
'
{} does not exist.
'
.
format
(
state_file
))
LOGGER
.
info
(
'
Loading pretrained weights from: {}
'
.
format
(
state_file
))
# resume network parameters
LOGGER
.
info
(
'
Loading model parameters ...
'
.
format
(
state
))
self
.
load_state_dict
(
model_state
[
'
model_state_dict
'
])
self
.
epoch
=
model_state
[
'
epoch
'
]
# load the model state
model_state
=
torch
.
load
(
state_file
)
# the model class
model_class
=
model_state
[
'
cls
'
]
# instanciate pretrained model architecture
model
=
model_class
(
**
model_state
[
'
params
'
])
# store state file as instance attribute
model
.
state_file
=
state_file
# load pretrained model weights
LOGGER
.
info
(
'
Loading model parameters ...
'
)
model
.
load_state_dict
(
model_state
[
'
model_state_dict
'
])
model
.
epoch
=
model_state
[
'
epoch
'
]
# resume optimizer parameters
if
optimizer
is
not
None
:
LOGGER
.
info
(
'
Loading optimizer parameters ...
'
.
format
(
state
)
)
LOGGER
.
info
(
'
Loading optimizer parameters ...
'
)
optimizer
.
load_state_dict
(
model_state
[
'
optim_state_dict
'
])
LOGGER
.
info
(
'
Model epoch: {:d}
'
.
format
(
model
.
epoch
))
return
model
,
optimizer
,
model_state
return
state
@property
def
state
(
self
):
return
self
.
state_file
class
UNet
(
Network
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment