Skip to content
Snippets Groups Projects
Commit ee41cb57 authored by Frisinghelli Daniel's avatar Frisinghelli Daniel
Browse files

Moved training initialization to dedicated script.

parent 5e68ee89
No related branches found
No related tags found
No related merge requests found
......@@ -29,21 +29,84 @@ License
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# builtins
from logging.config import dictConfig
# locals
from pysegcnn.core.trainer import NetworkTrainer
from pysegcnn.core.trainer import (DatasetConfig, SplitConfig, ModelConfig,
StateConfig, LogConfig,
MultispectralImageSegmentationTrainer)
from pysegcnn.main.config import (src_ds_config, src_split_config,
trg_ds_config, trg_split_config,
model_config)
from pysegcnn.core.logging import log_conf
if __name__ == '__main__':
# instanciate the network trainer class
trainer = NetworkTrainer.init_network_trainer(src_ds_config,
src_split_config,
trg_ds_config,
trg_split_config,
model_config)
# (x) train model
# (i) instanciate the source domain configurations
src_dc = DatasetConfig(**src_ds_config) # source domain dataset
src_sc = SplitConfig(**src_split_config) # source domain dataset split
# (ii) instanciate the target domain configuration
trg_dc = DatasetConfig(**trg_ds_config) # target domain dataset
trg_sc = SplitConfig(**trg_split_config) # target domain dataset split
# (iii) instanciate the model configuration
net_mc = ModelConfig(**model_config)
# (iv) instanciate the model state file
net_sc = StateConfig(src_dc, src_sc, trg_dc, trg_sc, net_mc)
state_file = net_sc.init_state()
# (v) instanciate logging configuration
net_lc = LogConfig(state_file)
dictConfig(log_conf(net_lc.log_file))
# (vi) instanciate the datasets to train the model on
src_ds = src_dc.init_dataset()
trg_ds = trg_dc.init_dataset()
# (vii) instanciate the training, validation and test datasets and
# dataloaders for the source domain
src_tra_ds, src_val_ds, src_tes_ds = src_sc.train_val_test_split(src_ds)
src_tra_dl, src_val_dl, src_tes_dl = src_sc.dataloaders(
src_tra_ds, src_val_ds, src_tes_ds, batch_size=net_mc.batch_size,
shuffle=True, drop_last=False)
# (viii) instanciate the training, validation and test datasets and
# dataloaders dor the target domain
trg_tra_ds, trg_val_ds, trg_tes_ds = trg_sc.train_val_test_split(trg_ds)
trg_tra_dl, trg_val_dl, trg_tes_dl = trg_sc.dataloaders(
trg_tra_ds, trg_val_ds, trg_tes_ds, batch_size=net_mc.batch_size,
shuffle=True, drop_last=False)
# (ix) instanciate the model
net, optimizer, checkpoint = net_mc.init_model(src_ds, state_file)
# (x) instanciate the network trainer class
trainer = MultispectralImageSegmentationTrainer(
model=net,
optimizer=optimizer,
state_file=net.state_file,
src_train_dl=src_tra_dl,
src_valid_dl=src_val_dl,
src_test_dl=src_tes_dl,
epochs=net_mc.epochs,
nthreads=net_mc.nthreads,
early_stop=net_mc.early_stop,
mode=net_mc.mode,
delta=net_mc.delta,
patience=net_mc.patience,
checkpoint_state=checkpoint,
save=net_mc.save,
supervised=net_mc.supervised,
trg_train_dl=trg_tra_dl,
trg_valid_dl=trg_val_dl,
trg_test_dl=trg_tes_dl,
uda_loss_function=net_mc.init_uda_loss_function(),
uda_lambda=net_mc.uda_lambda,
uda_pos=net_mc.uda_pos)
# (xi) train the model
training_state = trainer.train()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment