Skip to content
Snippets Groups Projects
Commit f8e77f34 authored by Frisinghelli Daniel's avatar Frisinghelli Daniel
Browse files

Implemented plot function for class distributions.

parent 8199ac71
No related branches found
No related tags found
No related merge requests found
......@@ -35,9 +35,9 @@ from pysegcnn.core.utils import accuracy_function, check_filename_length
from pysegcnn.main.train_config import HERE
# plot font size configuration
SMALL = 10
MEDIUM = 12
BIG = 14
SMALL = 12
MEDIUM = 14
BIG = 16
# controls default font size
plt.rc('font', size=MEDIUM)
......@@ -562,6 +562,91 @@ def plot_loss(state_file, figsize=(10, 10), step=5,
return fig
def plot_class_distribution(ds, figsize=(16, 9), alpha=0.5):
"""Plot the spectral distribution of the different classes in ``ds``.
Parameters
----------
ds : :py:class:`pysegcnn.core.dataset.ImageDataset`
An instance of the dataset to plot the class distribution over the
different spectral bands. Make sure to initialize ``ds`` with the
parameter ``tile_size=None``, which conserves the original size of
each image in the dataset.
Returns
-------
cls_df : :py:class:`pandas.DataFrame`
The class distribution DataFrame.
"""
# compute class distribution
cls_ds = ds.class_distribution()
# drop classes which are not represented in the dataset
cls_ds = {k: v for k, v in cls_ds.items() if np.any(v)}
# labels for the different classes
labels = [ds.labels[cls_id]['label'] for cls_id in cls_ds.keys()]
# number of spectral bands in the dataset
nbands = len(ds.use_bands)
# create a figure based on the number of spectral bands in the dataset
fig, axes = plt.subplots(min(3, nbands), int(np.ceil(max(1, nbands / 3))),
figsize=figsize, sharex=True, sharey=True)
axes = axes.flatten()
# iterate over the different bands
for band in range(nbands):
# current axis
ax = axes[band]
# get the spectral data for each class
data = [x[:, band] for x in cls_ds.values()]
# plot spectral distribution of the classes in the current band
bplot = ax.boxplot(data, labels=labels, patch_artist=True,
whis=[5, 95], showfliers=False)
# set axis y-limits: physical limits are (0, 1) for reflectance data
ax.set_ylim(0, 1)
# set colors of the boxes for the classes
for k, artists in bplot.items():
# the artists to color
if k in ['boxes', 'medians']:
# iterate over the artists
for c, art in enumerate(artists):
# line artists
if isinstance(art, matplotlib.lines.Line2D):
# set the colors of the lines in the boxplot
art.set_color(ds.labels[c]['color'])
# patch artists
elif isinstance(art, matplotlib.patches.Patch):
# set the colors of the patches
art.set_facecolor(ds.labels[c]['color'])
art.set_alpha(alpha)
# add name of the spectral band to the plot
ax.text(x=0.6, y=0.95, s='({})'.format(ds.use_bands[band]),
ha='left', va='top', weight='bold')
# adjust space between subplots
fig.subplots_adjust(hspace=0.075, wspace=0.025)
# remove empty axes
for ax in axes:
if not ax.lines:
fig.delaxes(ax)
return fig
class Animate(object):
"""Easily create animations with :py:mod:`matplotlib`.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment