Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import pandas as pd
import numpy as np
import xarray as xr
import geopandas as gpd
from shapely.geometry import Point
import matplotlib.pyplot as plt
import pdb
def check_data_gap(df):
df.dropna(axis='columns', how='all', inplace=True)
missing_dates = pd.date_range(df.index.min(), df.index.max()).difference(df.index)
print(f'Date start: {df.index.min().strftime("%Y-%m-%d")}, date end: {df.index.max().strftime("%Y-%m-%d")}')
if len(missing_dates) > 0:
print(f"Missing dates: {', '.join(missing_dates.strftime('%Y-%m-%d'))}")
else:
print('No missing dates')
# return missing_dates
def interpolate_df(df):
df = df.reindex(pd.date_range(df.index.min(), df.index.max()), fill_value=np.nan)
return df.interpolate()
def readnetcdf_in_shp_mattia(nc_fileName, shp_fileName, res=0.25, plot=False):
# Opent the netcdf file
ds = xr.open_dataset(nc_fileName)
# Open the shape file and reproject it to lat lon WGS84
shp = gpd.read_file(shp_fileName)
shp = shp.to_crs('epsg:4326')
# Crop ds with the shapefile bounding box (bb)
bb = shp.bounds.iloc[0]
ds = ds.sel(lon=slice(bb['minx']-res, bb['maxx']+res), lat=slice(bb['maxy']+res, bb['miny']-res))
# Mask all the points in ds where the grid box do not intersect or is in the shapefile
for x in ds.longitude.values:
for y in ds.latitude.values:
gridbox = Point(x, y).buffer(res/2, cap_style=3)
if not gridbox.intersects(shp.loc[0, 'geometry']):
for k in ds.data_vars.keys():
ds[k].loc[dict(longitude=x, latitude=y)] = np.nan
ds = ds.dropna(dim='longitude', how='all')
ds = ds.dropna(dim='latitude', how='all')
# Plot the era5 gridbox and the shapefile if plot=True
if plot:
for x in ds.longitude.values:
for y in ds.latitude.values:
gridbox = Point(x, y).buffer(res / 2, cap_style=3)
gridbox_x, gridbox_y = gridbox.exterior.xy
plt.plot(gridbox_x, gridbox_y, color='blue')
plt.plot(x, y, marker='o', color='red')
shp_x, shp_y = shp.loc[0, 'geometry'].exterior.xy
plt.plot(shp_x, shp_y, color='black')
plt.axis('equal')
return ds
def readnetcdf_in_shp(nc_fileName, shp_fileName, res=5500, plot=False):
# Open the netcdf file
ds = xr.open_dataset(nc_fileName)
# Open the shape file and reproject it to the MESCAN-Surfex grid (unit=meters)
shp = gpd.read_file(shp_fileName)
shp_reproj = shp.to_crs('+proj=lcc +lat_1=50 +lat_2=50 +lat_0=50 +lon_0=8 +x_0=2937018.5829291 +y_0=2937031.41074803 +a=6371229 +b=6371229')
# Crop ds with the shapefile bounding box (bb)
bb = shp_reproj.bounds.iloc[0]
ds = ds.sel(x=slice(bb['minx']-res, bb['maxx']+res),
y=slice(bb['miny']-res, bb['maxy']+res))
#0000 Mask all the points in ds where the grid box do not intersect or is in the shapefile
for i in ds.x.values:
for j in ds.y.values:
gridbox = Point(i, j).buffer(res/2, cap_style=3)
if not (gridbox.intersects(shp_reproj.loc[0, 'geometry'])):
for k in ds.data_vars.keys():
if not (k =='Lambert_Conformal'):
ds[k].loc[dict(x=i, y=j)] = np.nan
ds = ds.dropna(dim='x', how='all')
ds = ds.dropna(dim='y', how='all')
# Plot the era5 gridbox and the shapefile if plot=True
if plot:
for x in ds.x.values:
for y in ds.y.values:
gridbox = Point(x, y).buffer(res / 2, cap_style=3)
gridbox_x, gridbox_y = gridbox.exterior.xy
plt.plot(gridbox_x, gridbox_y, color='blue')
for k in ds.data_vars.keys():
if (k !='Lambert_Conformal'):
if not(ds[k].loc[dict(x=x, y=y)].isnull().all()):
plt.plot(x, y, marker='o', color='red')
shp_x, shp_y = shp_reproj.loc[0, 'geometry'].exterior.xy
plt.plot(shp_x, shp_y, color='black')
plt.axis('equal')
return ds
def xarray2df(xa, varnamedest,varnameor=False):
if not varnameor:
df = {}
for i in range(xa.y.size):
for j in range(xa.x.size):
df[f'{varnamedest}{i*xa.y.size+j}'] = xa.isel(y=i, x=j).to_dataframe().iloc[:, 2]
#pdb.set_trace()
else:
df = {}
for i in range(xa.y.size):
for j in range(xa.x.size):
df[f'{varnamedest}{i*xa.y.size+j}'] = xa.isel(y=i, x=j).to_dataframe().loc[:,varnameor]
#pdb.set_trace()
frame=pd.DataFrame(df)
return frame
# ------------------------------------------------------------------------------------------------------------------