Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Climax
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
Climax
Commits
b81925ec
Commit
b81925ec
authored
3 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Merged training and inference.
parent
c6444ae9
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
climax/main/downscale.py
+221
-0
221 additions, 0 deletions
climax/main/downscale.py
climax/main/downscale_train.py
+0
-178
0 additions, 178 deletions
climax/main/downscale_train.py
with
221 additions
and
178 deletions
climax/main/downscale
_infer
.py
→
climax/main/downscale.py
+
221
−
0
View file @
b81925ec
...
...
@@ -12,21 +12,28 @@ from logging.config import dictConfig
# externals
import
xarray
as
xr
from
sklearn.model_selection
import
train_test_split
from
torch.utils.data
import
DataLoader
# locals
from
pysegcnn.core.
trainer
import
LogConfig
from
pysegcnn.core.
utils
import
search_files
from
pysegcnn.core.models
import
Network
from
pysegcnn.core.trainer
import
NetworkTrainer
,
LogConfig
from
pysegcnn.core.logging
import
log_conf
from
pysegcnn.core.utils
import
search_files
from
climax.core.
dataset
import
ERA5Dataset
from
climax.core.dataset
import
ERA5Dataset
,
NetCDFDataset
from
climax.core.
loss
import
MSELoss
,
L1Loss
from
climax.core.predict
import
predict_ERA5
from
climax.core.utils
import
split_date_range
from
climax.main.config
import
(
ERA5_PREDICTORS
,
ERA5_PLEVELS
,
PREDICTAND
,
NET
,
VALID_PERIOD
,
BATCH_SIZE
,
NORM
,
DOY
,
NYEARS
,
DEM
,
DEM_FEATURES
,
LOSS
,
ANOMALIES
,
OPTIM
,
OPTIM_PARAMS
,
CHUNKS
,
LR_SCHEDULER
,
OVERWRITE
,
SENSITIVITY
)
from
climax.main.io
import
ERA5_PATH
,
DEM_PATH
,
MODEL_PATH
,
TARGET_PATH
from
climax.main.config
import
(
ERA5_PLEVELS
,
ERA5_PREDICTORS
,
PREDICTAND
,
CALIB_PERIOD
,
DOY
,
SHUFFLE
,
BATCH_SIZE
,
OPTIM
,
NORM
,
TRAIN_CONFIG
,
NET
,
LOSS
,
FILTERS
,
OVERWRITE
,
DEM
,
DEM_FEATURES
,
STRATIFY
,
WET_DAY_THRESHOLD
,
VALID_SIZE
,
ANOMALIES
,
OPTIM_PARAMS
,
LR_SCHEDULER
,
SENSITIVITY
,
LR_SCHEDULER_PARAMS
,
CHUNKS
,
VALID_PERIOD
,
NYEARS
)
from
climax.main.io
import
(
ERA5_PATH
,
OBS_PATH
,
DEM_PATH
,
MODEL_PATH
,
TARGET_PATH
)
# module level logger
LOGGER
=
logging
.
getLogger
(
__name__
)
...
...
@@ -53,53 +60,140 @@ if __name__ == '__main__':
state_file
=
MODEL_PATH
.
joinpath
(
PREDICTAND
,
state_file
)
target
=
TARGET_PATH
.
joinpath
(
PREDICTAND
)
# initialize logging
log_file
=
state_file
.
parent
.
joinpath
(
state_file
.
name
.
replace
(
state_file
.
suffix
,
'
_log.txt
'
))
if
log_file
.
exists
():
log_file
.
unlink
()
dictConfig
(
log_conf
(
log_file
))
# check if target dataset already exists
target
=
target
.
joinpath
(
state_file
.
name
.
replace
(
state_file
.
suffix
,
'
.nc
'
))
if
target
.
exists
()
and
not
OVERWRITE
:
LogConfig
.
init_log
(
'
{} already exists.
'
.
format
(
target
))
sys
.
exit
()
# load pretrained model
if
state_file
.
exists
()
and
not
OVERWRITE
:
# load pretrained network
net
,
_
=
Network
.
load_pretrained_model
(
state_file
,
NET
)
else
:
# load pretrained model
if
state_file
.
exists
():
# initialize downscaling
LogConfig
.
init_log
(
'
Initializing downscaling for period: {}
'
.
format
(
'
-
'
.
join
([
str
(
CALIB_PERIOD
[
0
]),
str
(
CALIB_PERIOD
[
-
1
])])))
# check if model exists
if
state_file
.
exists
()
and
not
OVERWRITE
:
# load pretrained network
net
,
_
=
Network
.
load_pretrained_model
(
state_file
,
NET
)
else
:
# initialize OBS predictand dataset
LOGGER
.
info
(
'
{} does not exist.
'
.
format
(
state_file
))
LogConfig
.
init_log
(
'
{} already exists.
'
.
format
(
state_file
))
sys
.
exit
()
# initialize logging
log_file
=
state_file
.
parent
.
joinpath
(
state_file
.
name
.
replace
(
state_file
.
suffix
,
'
_log.txt
'
))
dictConfig
(
log_conf
(
log_file
))
# initialize ERA5 predictor dataset
LogConfig
.
init_log
(
'
Initializing ERA5 predictors.
'
)
Era5
=
ERA5Dataset
(
ERA5_PATH
.
joinpath
(
'
ERA5
'
),
ERA5_PREDICTORS
,
plevels
=
ERA5_PLEVELS
)
Era5_ds
=
Era5
.
merge
(
chunks
=
CHUNKS
)
# initialize OBS predictand dataset
LogConfig
.
init_log
(
'
Initializing observations for predictand: {}
'
.
format
(
PREDICTAND
))
# check whether to joinlty train tasmin and tasmax
if
PREDICTAND
==
'
tas
'
:
# read both tasmax and tasmin
tasmax
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmax
'
),
'
.nc$
'
).
pop
())
tasmin
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmin
'
),
'
.nc$
'
).
pop
())
Obs_ds
=
xr
.
merge
([
tasmax
,
tasmin
])
else
:
# read in-situ gridded observations
Obs_ds
=
search_files
(
OBS_PATH
.
joinpath
(
PREDICTAND
),
'
.nc$
'
).
pop
()
Obs_ds
=
xr
.
open_dataset
(
Obs_ds
)
# whether to use digital elevation model
if
DEM
:
# digital elevation model: Copernicus EU-Dem v1.1
dem
=
search_files
(
DEM_PATH
,
'
^eu_dem_v11_stt.nc$
'
).
pop
()
# read elevation and compute slope and aspect
dem
=
ERA5Dataset
.
dem_features
(
dem
,
{
'
y
'
:
Era5_ds
.
y
,
'
x
'
:
Era5_ds
.
x
},
add_coord
=
{
'
time
'
:
Era5_ds
.
time
})
# check whether to use slope and aspect
if
not
DEM_FEATURES
:
dem
=
dem
.
drop_vars
([
'
slope
'
,
'
aspect
'
]).
chunk
(
Era5_ds
.
chunks
)
# add dem to set of predictor variables
Era5_ds
=
xr
.
merge
([
Era5_ds
,
dem
])
# initialize network and optimizer
LogConfig
.
init_log
(
'
Initializing network and optimizer.
'
)
# define number of output fields
# check whether modelling pr with probabilistic approach
outputs
=
len
(
Obs_ds
.
data_vars
)
if
PREDICTAND
==
'
pr
'
:
outputs
=
(
1
if
(
isinstance
(
LOSS
,
MSELoss
)
or
isinstance
(
LOSS
,
L1Loss
))
else
3
)
# instanciate network
inputs
=
len
(
Era5_ds
.
data_vars
)
+
2
if
DOY
else
len
(
Era5_ds
.
data_vars
)
net
=
NET
(
state_file
,
inputs
,
outputs
,
filters
=
FILTERS
)
# initialize optimizer
optimizer
=
OPTIM
(
net
.
parameters
(),
**
OPTIM_PARAMS
)
# initialize learning rate scheduler
if
LR_SCHEDULER
is
not
None
:
LR_SCHEDULER
=
LR_SCHEDULER
(
optimizer
,
**
LR_SCHEDULER_PARAMS
)
# initialize training data
LogConfig
.
init_log
(
'
Initializing training data.
'
)
# split calibration period into training and validation period
if
PREDICTAND
==
'
pr
'
and
STRATIFY
:
# stratify training and validation dataset by number of
# observed wet days for precipitation
wet_days
=
(
Obs_ds
.
sel
(
time
=
CALIB_PERIOD
).
mean
(
dim
=
(
'
y
'
,
'
x
'
))
>=
WET_DAY_THRESHOLD
).
to_array
().
values
.
squeeze
()
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
stratify
=
wet_days
,
test_size
=
VALID_SIZE
)
# sort chronologically
train
,
valid
=
sorted
(
train
),
sorted
(
valid
)
else
:
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
shuffle
=
False
,
test_size
=
VALID_SIZE
)
# training and validation dataset
Era5_train
,
Obs_train
=
Era5_ds
.
sel
(
time
=
train
),
Obs_ds
.
sel
(
time
=
train
)
Era5_valid
,
Obs_valid
=
Era5_ds
.
sel
(
time
=
valid
),
Obs_ds
.
sel
(
time
=
valid
)
# create PyTorch compliant dataset and dataloader instances for model
# training
train_ds
=
NetCDFDataset
(
Era5_train
,
Obs_train
,
normalize
=
NORM
,
doy
=
DOY
,
anomalies
=
ANOMALIES
)
valid_ds
=
NetCDFDataset
(
Era5_valid
,
Obs_valid
,
normalize
=
NORM
,
doy
=
DOY
,
anomalies
=
ANOMALIES
)
train_dl
=
DataLoader
(
train_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
valid_dl
=
DataLoader
(
valid_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
# initialize network trainer
trainer
=
NetworkTrainer
(
net
,
optimizer
,
net
.
state_file
,
train_dl
,
valid_dl
,
loss_function
=
LOSS
,
lr_scheduler
=
LR_SCHEDULER
,
**
TRAIN_CONFIG
)
# train model
state
=
trainer
.
train
()
# predict reference period
LogConfig
.
init_log
(
'
Predicting reference period: {}
'
.
format
(
'
-
'
.
join
([
str
(
VALID_PERIOD
[
0
]),
str
(
VALID_PERIOD
[
-
1
])])))
# initialize ERA5 predictor dataset
LogConfig
.
init_log
(
'
Initializing ERA5 predictors.
'
)
Era5
=
ERA5Dataset
(
ERA5_PATH
.
joinpath
(
'
ERA5
'
),
ERA5_PREDICTORS
,
plevels
=
ERA5_PLEVELS
)
Era5_ds
=
Era5
.
merge
(
chunks
=
CHUNKS
)
# whether to use digital elevation model
if
DEM
:
# digital elevation model: Copernicus EU-Dem v1.1
dem
=
search_files
(
DEM_PATH
,
'
^eu_dem_v11_stt.nc$
'
).
pop
()
# read elevation and compute slope and aspect
dem
=
ERA5Dataset
.
dem_features
(
dem
,
{
'
y
'
:
Era5_ds
.
y
,
'
x
'
:
Era5_ds
.
x
},
add_coord
=
{
'
time
'
:
Era5_ds
.
time
})
# check whether to use slope and aspect
if
not
DEM_FEATURES
:
dem
=
dem
.
drop_vars
([
'
slope
'
,
'
aspect
'
])
# add dem to set of predictor variables
Era5_ds
=
xr
.
merge
([
Era5_ds
,
dem
]).
chunk
(
Era5_ds
.
chunks
)
# subset to reference period and predict in NYEAR intervals
trg_ds
=
[]
for
dates
in
split_date_range
(
VALID_PERIOD
[
0
],
VALID_PERIOD
[
-
1
],
...
...
This diff is collapsed.
Click to expand it.
climax/main/downscale_train.py
deleted
100644 → 0
+
0
−
178
View file @
c6444ae9
"""
Dynamical climate downscaling using deep convolutional neural networks.
"""
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# builtins
import
sys
import
time
import
logging
from
datetime
import
timedelta
from
logging.config
import
dictConfig
# externals
import
xarray
as
xr
from
sklearn.model_selection
import
train_test_split
from
torch.utils.data
import
DataLoader
# locals
from
pysegcnn.core.utils
import
search_files
from
pysegcnn.core.trainer
import
NetworkTrainer
,
LogConfig
from
pysegcnn.core.logging
import
log_conf
from
climax.core.dataset
import
ERA5Dataset
,
NetCDFDataset
from
climax.core.loss
import
MSELoss
,
L1Loss
from
climax.main.config
import
(
ERA5_PLEVELS
,
ERA5_PREDICTORS
,
PREDICTAND
,
CALIB_PERIOD
,
DOY
,
SHUFFLE
,
BATCH_SIZE
,
OPTIM
,
NORM
,
TRAIN_CONFIG
,
NET
,
LOSS
,
FILTERS
,
OVERWRITE
,
DEM
,
DEM_FEATURES
,
STRATIFY
,
WET_DAY_THRESHOLD
,
VALID_SIZE
,
ANOMALIES
,
OPTIM_PARAMS
,
LR_SCHEDULER
,
SENSITIVITY
,
LR_SCHEDULER_PARAMS
,
CHUNKS
)
from
climax.main.io
import
ERA5_PATH
,
OBS_PATH
,
DEM_PATH
,
MODEL_PATH
# module level logger
LOGGER
=
logging
.
getLogger
(
__name__
)
if
__name__
==
'
__main__
'
:
# initialize timing
start_time
=
time
.
monotonic
()
# initialize network filename
state_file
=
ERA5Dataset
.
state_file
(
NET
,
PREDICTAND
,
ERA5_PREDICTORS
,
ERA5_PLEVELS
,
dem
=
DEM
,
dem_features
=
DEM_FEATURES
,
doy
=
DOY
,
loss
=
LOSS
,
anomalies
=
ANOMALIES
,
decay
=
OPTIM_PARAMS
[
'
weight_decay
'
],
optim
=
OPTIM
,
lr
=
OPTIM_PARAMS
[
'
lr
'
],
lr_scheduler
=
LR_SCHEDULER
)
# path to model state
if
SENSITIVITY
:
# models trained for hyperparameter optimization
state_file
=
MODEL_PATH
.
joinpath
(
'
sensitivity
'
,
PREDICTAND
,
state_file
)
else
:
state_file
=
MODEL_PATH
.
joinpath
(
PREDICTAND
,
state_file
)
# initialize logging
log_file
=
state_file
.
parent
.
joinpath
(
state_file
.
name
.
replace
(
state_file
.
suffix
,
'
_log.txt
'
))
if
log_file
.
exists
():
log_file
.
unlink
()
dictConfig
(
log_conf
(
log_file
))
# initialize downscaling
LogConfig
.
init_log
(
'
Initializing downscaling for period: {}
'
.
format
(
'
-
'
.
join
([
str
(
CALIB_PERIOD
[
0
]),
str
(
CALIB_PERIOD
[
-
1
])])))
# check if model exists
if
state_file
.
exists
()
and
not
OVERWRITE
:
# load pretrained network
LogConfig
.
init_log
(
'
{} already exists.
'
.
format
(
state_file
))
sys
.
exit
()
# initialize ERA5 predictor dataset
LogConfig
.
init_log
(
'
Initializing ERA5 predictors.
'
)
Era5
=
ERA5Dataset
(
ERA5_PATH
.
joinpath
(
'
ERA5
'
),
ERA5_PREDICTORS
,
plevels
=
ERA5_PLEVELS
)
Era5_ds
=
Era5
.
merge
(
chunks
=
CHUNKS
)
# initialize OBS predictand dataset
LogConfig
.
init_log
(
'
Initializing observations for predictand: {}
'
.
format
(
PREDICTAND
))
# check whether to joinlty train tasmin and tasmax
if
PREDICTAND
==
'
tas
'
:
# read both tasmax and tasmin
tasmax
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmax
'
),
'
.nc$
'
).
pop
())
tasmin
=
xr
.
open_dataset
(
search_files
(
OBS_PATH
.
joinpath
(
'
tasmin
'
),
'
.nc$
'
).
pop
())
Obs_ds
=
xr
.
merge
([
tasmax
,
tasmin
])
else
:
# read in-situ gridded observations
Obs_ds
=
search_files
(
OBS_PATH
.
joinpath
(
PREDICTAND
),
'
.nc$
'
).
pop
()
Obs_ds
=
xr
.
open_dataset
(
Obs_ds
)
# whether to use digital elevation model
if
DEM
:
# digital elevation model: Copernicus EU-Dem v1.1
dem
=
search_files
(
DEM_PATH
,
'
^eu_dem_v11_stt.nc$
'
).
pop
()
# read elevation and compute slope and aspect
dem
=
ERA5Dataset
.
dem_features
(
dem
,
{
'
y
'
:
Era5_ds
.
y
,
'
x
'
:
Era5_ds
.
x
},
add_coord
=
{
'
time
'
:
Era5_ds
.
time
})
# check whether to use slope and aspect
if
not
DEM_FEATURES
:
dem
=
dem
.
drop_vars
([
'
slope
'
,
'
aspect
'
]).
chunk
(
Era5_ds
.
chunks
)
# add dem to set of predictor variables
Era5_ds
=
xr
.
merge
([
Era5_ds
,
dem
])
# initialize network and optimizer
LogConfig
.
init_log
(
'
Initializing network and optimizer.
'
)
# define number of output fields
# check whether modelling pr with probabilistic approach
outputs
=
len
(
Obs_ds
.
data_vars
)
if
PREDICTAND
==
'
pr
'
:
outputs
=
(
1
if
(
isinstance
(
LOSS
,
MSELoss
)
or
isinstance
(
LOSS
,
L1Loss
))
else
3
)
# instanciate network
inputs
=
len
(
Era5_ds
.
data_vars
)
+
2
if
DOY
else
len
(
Era5_ds
.
data_vars
)
net
=
NET
(
state_file
,
inputs
,
outputs
,
filters
=
FILTERS
)
# initialize optimizer
optimizer
=
OPTIM
(
net
.
parameters
(),
**
OPTIM_PARAMS
)
# initialize learning rate scheduler
if
LR_SCHEDULER
is
not
None
:
LR_SCHEDULER
=
LR_SCHEDULER
(
optimizer
,
**
LR_SCHEDULER_PARAMS
)
# initialize training data
LogConfig
.
init_log
(
'
Initializing training data.
'
)
# split calibration period into training and validation period
if
PREDICTAND
==
'
pr
'
and
STRATIFY
:
# stratify training and validation dataset by number of
# observed wet days for precipitation
wet_days
=
(
Obs_ds
.
sel
(
time
=
CALIB_PERIOD
).
mean
(
dim
=
(
'
y
'
,
'
x
'
))
>=
WET_DAY_THRESHOLD
).
to_array
().
values
.
squeeze
()
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
stratify
=
wet_days
,
test_size
=
VALID_SIZE
)
# sort chronologically
train
,
valid
=
sorted
(
train
),
sorted
(
valid
)
else
:
train
,
valid
=
train_test_split
(
CALIB_PERIOD
,
shuffle
=
False
,
test_size
=
VALID_SIZE
)
# training and validation dataset
Era5_train
,
Obs_train
=
Era5_ds
.
sel
(
time
=
train
),
Obs_ds
.
sel
(
time
=
train
)
Era5_valid
,
Obs_valid
=
Era5_ds
.
sel
(
time
=
valid
),
Obs_ds
.
sel
(
time
=
valid
)
# create PyTorch compliant dataset and dataloader instances for model
# training
train_ds
=
NetCDFDataset
(
Era5_train
,
Obs_train
,
normalize
=
NORM
,
doy
=
DOY
,
anomalies
=
ANOMALIES
)
valid_ds
=
NetCDFDataset
(
Era5_valid
,
Obs_valid
,
normalize
=
NORM
,
doy
=
DOY
,
anomalies
=
ANOMALIES
)
train_dl
=
DataLoader
(
train_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
valid_dl
=
DataLoader
(
valid_ds
,
batch_size
=
BATCH_SIZE
,
shuffle
=
SHUFFLE
,
drop_last
=
False
)
# initialize network trainer
trainer
=
NetworkTrainer
(
net
,
optimizer
,
net
.
state_file
,
train_dl
,
valid_dl
,
loss_function
=
LOSS
,
lr_scheduler
=
LR_SCHEDULER
,
**
TRAIN_CONFIG
)
# train model
state
=
trainer
.
train
()
# log execution time of script
LogConfig
.
init_log
(
'
Execution time of script {}: {}
'
.
format
(
__file__
,
timedelta
(
seconds
=
time
.
monotonic
()
-
start_time
)))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment