Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Climax
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
earth_observation_public
Climax
Commits
fcc5bc7f
Commit
fcc5bc7f
authored
3 years ago
by
Frisinghelli Daniel
Browse files
Options
Downloads
Patches
Plain Diff
Default configuration.
parent
be0a7d6e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
climax/main/config.py
+10
-10
10 additions, 10 deletions
climax/main/config.py
with
10 additions
and
10 deletions
climax/main/config.py
+
10
−
10
View file @
fcc5bc7f
...
...
@@ -50,7 +50,7 @@ CHUNKS = {'time': 365}
# -----------------------------------------------------------------------------
# include day of year as predictor
DOY
=
Fals
e
DOY
=
Tru
e
# use digital elevation model instead of model orography
DEM
=
True
...
...
@@ -85,7 +85,7 @@ STRATIFY = False
# size of the validation set w.r.t. the training set
# e.g., VALID_SIZE = 0.1 means: 90% of CALIB_PERIOD for training
# 10% of CALIB_PERIOD for validation
VALID_SIZE
=
0.
1
VALID_SIZE
=
0.
2
# number of folds for training with KFold cross-validation
CV
=
5
...
...
@@ -117,18 +117,18 @@ FILTERS = [32, 64, 128, 256]
# BernoulliGammaLoss (NLL of Bernoulli-Gamma distribution)
# BernoulliWeibullLoss (NLL of Bernoulli-Weibull distribution)
# LOSS = L1Loss()
LOSS
=
MSELoss
()
#
LOSS = BernoulliGammaLoss(min_amount=1)
#
LOSS = MSELoss()
LOSS
=
BernoulliGammaLoss
(
min_amount
=
1
)
# LOSS = BernoulliWeibullLoss(min_amount=1)
# stochastic optimization algorithm
OPTIM
=
torch
.
optim
.
SGD
# OPTIM = torch.optim.Adam
OPTIM_PARAMS
=
{
'
lr
'
:
1e-
1
,
# learning rate
'
weight_decay
'
:
1e-6
# regularization rate
OPTIM_PARAMS
=
{
'
lr
'
:
1e-
3
,
# learning rate
'
weight_decay
'
:
0
# regularization rate
}
if
OPTIM
==
torch
.
optim
.
SGD
:
OPTIM_PARAMS
[
'
momentum
'
]
=
0.9
OPTIM_PARAMS
[
'
momentum
'
]
=
0.9
9
# learning rate scheduler
# LR_SCHEDULER = torch.optim.lr_scheduler.MultiStepLR
...
...
@@ -148,14 +148,14 @@ BATCH_SIZE = 16
# network training configuration
TRAIN_CONFIG
=
{
'
checkpoint_state
'
:
{},
'
epochs
'
:
2
50
,
'
epochs
'
:
50
,
'
save
'
:
True
,
'
save_loaders
'
:
False
,
'
early_stop
'
:
True
,
'
patience
'
:
25
,
'
patience
'
:
10
,
'
multi_gpu
'
:
True
,
'
classification
'
:
False
,
'
clip_gradients
'
:
Tru
e
'
clip_gradients
'
:
Fals
e
}
# whether to overwrite existing models
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment