Skip to content
Snippets Groups Projects
Commit 86f3fd1e authored by Frisinghelli Daniel's avatar Frisinghelli Daniel
Browse files

Improved documentation of available options.

parent ee41cb57
No related branches found
No related tags found
No related merge requests found
...@@ -45,7 +45,7 @@ TRG_DS = 'Alcd' ...@@ -45,7 +45,7 @@ TRG_DS = 'Alcd'
BANDS = ['red', 'green', 'blue', 'nir', 'swir1', 'swir2'] BANDS = ['red', 'green', 'blue', 'nir', 'swir1', 'swir2']
# tile size of a single sample # tile size of a single sample
TILE_SIZE = None TILE_SIZE = 128
# the source dataset configuration dictionary # the source dataset configuration dictionary
src_ds_config = { src_ds_config = {
...@@ -247,33 +247,39 @@ model_config = { ...@@ -247,33 +247,39 @@ model_config = {
# whether to apply any sort of transfer learning # whether to apply any sort of transfer learning
# if transfer=False, the model is only trained on the source dataset # if transfer=False, the model is only trained on the source dataset
'transfer': True, # 'transfer': True,
# 'transfer': False 'transfer': False,
# name of the pretrained model to apply for transfer learning # name of the pretrained model to apply for transfer learning
# Required if supervised=True # required if transfer=True and supervised=True
# Optional if unsupervised=True # optional if transfer=True and unsupervised=True
'pretrained_model': '', # nopep8 'pretrained_model': '', # nopep8
# Supervised vs. Unsupervised --------------------------------------------- # Supervised vs. Unsupervised ---------------------------------------------
# -------------------------------------------------------------------------
# the mode of transfer learning # IMPORTANT: this setting only applies if 'transfer=True'
# supervised=True: fine-tune a pretrained model to the target dataset # if 'transfer=False', supervised is automatically set to True
# IMPORTANT: this option requires target domain labels! # -------------------------------------------------------------------------
# supervised=False: adapt a model via unsupervised domain adaptation from # supervised=True: the pretrained model defined by 'pretrained_model' is
# the source to the target domain # trained using labeled data from the specified SOURCE
# dataset ('src_ds_config') only
#
# supervised=False: A model is trained jointly using LABELED data from the
# specified SOURCE ('src_ds_config') dataset and
# UNLABELED data from the specified TARGET dataset
# ('trg_ds_config'). The model is either trained from
# scratch ('uda_from_pretrained=False') or the pretrained
# model in 'pretrained_model' is loaded
# ('uda_from_pretrained=True')
# 'supervised': True, # 'supervised': True,
'supervised': False, 'supervised': False,
# whether to freeze the pretrained model weights when fine-tuning # whether to freeze the pretrained model weights when using supervised
# NOTE: this option only works for supervised transfer learning # transfer learning
# if True, only the classification layer is fine-tuned
# if False, all layers are fine-tuned
'freeze': True, 'freeze': True,
# Loss function for unsupervised domain adaptation # loss function for unsupervised domain adaptation
# Currently supported methods: # currently supported methods:
# - DeepCORAL (correlation alignment) # - DeepCORAL (correlation alignment)
'uda_loss': 'coral', 'uda_loss': 'coral',
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment