Skip to content
Snippets Groups Projects
rioxarray_stac.py 14.2 KiB
Newer Older
Claus Michele's avatar
Claus Michele committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
"""
Modified from https://github.com/developmentseed/rio-stac/blob/main/rio_stac/stac.py
Using as main data model an xArray object, accessing the properties using rioxarray instead of rasterio
"""

"""Create STAC Item from a rasterio dataset."""

import datetime
import math
import os
import warnings
from contextlib import ExitStack
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy
import pystac
import rasterio
import xarray as xr
import rioxarray
from pystac.utils import str_to_datetime


from rasterio import transform, warp
from rasterio.features import bounds as feature_bounds
from rasterio.io import DatasetReader, DatasetWriter, MemoryFile
from rasterio.vrt import WarpedVRT

PROJECTION_EXT_VERSION = "v1.1.0"
RASTER_EXT_VERSION = "v1.1.0"
EO_EXT_VERSION = "v1.1.0"

EPSG_4326 = rasterio.crs.CRS.from_epsg(4326)


def bbox_to_geom(bbox: Tuple[float, float, float, float]) -> Dict:
    """Return a geojson geometry from a bbox."""
    return {
        "type": "Polygon",
        "coordinates": [
            [
                [bbox[0], bbox[1]],
                [bbox[2], bbox[1]],
                [bbox[2], bbox[3]],
                [bbox[0], bbox[3]],
                [bbox[0], bbox[1]],
            ]
        ],
    }


def rioxarray_get_dataset_geom(
    src_dst: xr.DataArray,
    densify_pts: int = 0,
    precision: int = -1,
) -> Dict:
    """Get Raster Footprint."""
    if densify_pts < 0:
        raise ValueError("`densify_pts` must be positive")

    if src_dst.rio.crs is not None:
        # 1. Create Polygon from raster bounds
        geom = bbox_to_geom(src_dst.rio.bounds())

        # 2. Densify the Polygon geometry
        if src_dst.rio.crs != EPSG_4326 and densify_pts:
            # Derived from code found at
            # https://stackoverflow.com/questions/64995977/generating-equidistance-points-along-the-boundary-of-a-polygon-but-cw-ccw
            coordinates = numpy.asarray(geom["coordinates"][0])

            densified_number = len(coordinates) * densify_pts
            existing_indices = numpy.arange(0, densified_number, densify_pts)
            interp_indices = numpy.arange(existing_indices[-1] + 1)
            interp_x = numpy.interp(interp_indices, existing_indices, coordinates[:, 0])
            interp_y = numpy.interp(interp_indices, existing_indices, coordinates[:, 1])
            geom = {
                "type": "Polygon",
                "coordinates": [[(x, y) for x, y in zip(interp_x, interp_y)]],
            }

        # 3. Reproject the geometry to "epsg:4326"
        geom = warp.transform_geom(src_dst.rio.crs, EPSG_4326, geom, precision=precision)
        bbox = feature_bounds(geom)

    else:
        warnings.warn(
            "Input file doesn't have CRS information, setting geometry and bbox to (-180,-90,180,90)."
        )
        bbox = (-180.0, -90.0, 180.0, 90.0)
        geom = bbox_to_geom(bbox)

    return {"bbox": list(bbox), "footprint": geom}


def rioxarray_get_projection_info(
    src_dst: xr.DataArray,
) -> Dict:
    """Get projection metadata.

    The STAC projection extension allows for three different ways to describe the coordinate reference system
    associated with a raster :
    - EPSG code
    - WKT2
    - PROJJSON

    All are optional, and they can be provided altogether as well. Therefore, as long as one can be obtained from
    the data, we add it to the returned dictionary.

    see: https://github.com/stac-extensions/projection

    """
    projjson = None
    wkt2 = None
    epsg = None
    if src_dst.rio.crs is not None:
        # EPSG
        epsg = src_dst.rio.crs.to_epsg() if src_dst.rio.crs.is_epsg_code else None

        # PROJJSON
        try:
            projjson = src_dst.rio.crs.to_dict(projjson=True)
        except (AttributeError, TypeError) as ex:
            warnings.warn(f"Could not get PROJJSON from dataset : {ex}")
            pass

        # WKT2
        try:
            wkt2 = src_dst.rio.crs.to_wkt()
        except Exception as ex:
            warnings.warn(f"Could not get WKT2 from dataset : {ex}")
            pass

    meta = {
        "epsg": epsg,
        "geometry": bbox_to_geom(src_dst.rio.bounds()),
        "bbox": list(src_dst.rio.bounds()),
        "shape": [src_dst.rio.height, src_dst.rio.width],
        "transform": list(src_dst.rio.transform()),
    }

    if projjson is not None:
        meta["projjson"] = projjson

    if wkt2 is not None:
        meta["wkt2"] = wkt2

    return meta


def get_eobands_info(
    src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT, MemoryFile]
) -> List:
    """Get eo:bands metadata.

    see: https://github.com/stac-extensions/eo#item-properties-or-asset-fields

    """
    eo_bands = []

    colors = src_dst.colorinterp
    for ix in src_dst.indexes:
        band_meta = {"name": f"b{ix}"}

        descr = src_dst.descriptions[ix - 1]
        color = colors[ix - 1].name

        # Description metadata or Colorinterp or Nothing
        description = descr or color
        if description:
            band_meta["description"] = description

        eo_bands.append(band_meta)

    return eo_bands


def _rioxarray_get_stats(arr: numpy.ndarray, **kwargs: Any) -> Dict:
    """Calculate array statistics."""
    # Avoid non masked nan/inf values
    arr = arr.values
    numpy.ma.fix_invalid(arr, copy=False)
    sample, edges = numpy.histogram(arr)
    return {
        "statistics": {
            "mean": float(arr.mean()),
            "minimum": float(arr.min()),
            "maximum": float(arr.max()),
            "stddev": float(arr.std()),
            "valid_percent": float(numpy.count_nonzero(arr))
            / float(arr.size)
            * 100,
        },
        "histogram": {
            "count": len(edges),
            "min": float(edges.min()),
            "max": float(edges.max()),
            "buckets": sample.tolist(),
        },
    }


def rioxarray_get_raster_info(  # noqa: C901
    src_dst: xr.DataArray,
    max_size: int = 1024,
) -> List[Dict]:
    """Get raster metadata.

    see: https://github.com/stac-extensions/raster#raster-band-object

    """
    height = src_dst.rio.height
    width = src_dst.rio.width
    if max_size:
        if max(width, height) > max_size:
            ratio = height / width
            if ratio > 1:
                height = max_size
                width = math.ceil(height / ratio)
            else:
                width = max_size
                height = math.ceil(width * ratio)

    meta: List[Dict] = []
    
    # area_or_point = src_dst.tags().get("AREA_OR_POINT", "").lower()
    
    # Missing `bits_per_sample` and `spatial_resolution`
    # It should contain only one band/variable
    # for band in src_dst.indexes:
    value = {
        "data_type": str(src_dst.dtype),
        "scale": 1, # TODO: load scale and offset if present
        "offset": 0,
    }
    # if area_or_point:
    #     value["sampling"] = area_or_point

    # If the Nodata is not set we don't forward it.
    if src_dst.rio.nodata is not None:
        if numpy.isnan(src_dst.rio.nodata):
            value["nodata"] = "nan"
        elif numpy.isposinf(src_dst.rio.nodata):
            value["nodata"] = "inf"
        elif numpy.isneginf(src_dst.rio.nodata):
            value["nodata"] = "-inf"
        else:
            value["nodata"] = src_dst.rio.nodata
    # TODO: check if we can get the unit
    # if src_dst.rio.units[0] is not None:
    #     value["unit"] = src_dst.rio.units[0]

    value.update(_rioxarray_get_stats(src_dst))
    meta.append(value)

    return meta


def get_media_type(
    src_dst: Union[DatasetReader, DatasetWriter, WarpedVRT, MemoryFile]
) -> Optional[pystac.MediaType]:
    """Find MediaType for a raster dataset."""
    driver = src_dst.driver

    if driver == "GTiff":
        if src_dst.crs:
            return pystac.MediaType.GEOTIFF
        else:
            return pystac.MediaType.TIFF

    elif driver in [
        "JP2ECW",
        "JP2KAK",
        "JP2LURA",
        "JP2MrSID",
        "JP2OpenJPEG",
        "JPEG2000",
    ]:
        return pystac.MediaType.JPEG2000

    elif driver in ["HDF4", "HDF4Image"]:
        return pystac.MediaType.HDF

    elif driver in ["HDF5", "HDF5Image"]:
        return pystac.MediaType.HDF5

    elif driver == "JPEG":
        return pystac.MediaType.JPEG

    elif driver == "PNG":
        return pystac.MediaType.PNG

    warnings.warn("Could not determine the media type from GDAL driver.")
    return None


def create_stac_item(
    source: Union[str, DatasetReader, DatasetWriter, WarpedVRT, MemoryFile],
    input_datetime: Optional[datetime.datetime] = None,
    extensions: Optional[List[str]] = None,
    collection: Optional[str] = None,
    collection_url: Optional[str] = None,
    properties: Optional[Dict] = None,
    id: Optional[str] = None,
    assets: Optional[Dict[str, pystac.Asset]] = None,
    asset_name: str = "asset",
    asset_roles: Optional[List[str]] = None,
    asset_media_type: Optional[Union[str, pystac.MediaType]] = "auto",
    asset_href: Optional[str] = None,
    with_proj: bool = False,
    with_raster: bool = False,
    with_eo: bool = False,
    raster_max_size: int = 1024,
    geom_densify_pts: int = 0,
    geom_precision: int = -1,
) -> pystac.Item:
    """Create a Stac Item.

    Args:
        source (str or opened rasterio dataset): input path or rasterio dataset.
        input_datetime (datetime.datetime, optional): datetime associated with the item.
        extensions (list of str): input list of extensions to use in the item.
        collection (str, optional): name of collection the item belongs to.
        collection_url (str, optional): Link to the STAC Collection.
        properties (dict, optional): additional properties to add in the item.
        id (str, optional): id to assign to the item (default to the source basename).
        assets (dict, optional): Assets to set in the item. If set we won't create one from the source.
        asset_name (str, optional): asset name in the Assets object.
        asset_roles (list of str, optional): list of str | list of asset's roles.
        asset_media_type (str or pystac.MediaType, optional): asset's media type.
        asset_href (str, optional): asset's URI (default to input path).
        with_proj (bool): Add the `projection` extension and properties (default to False).
        with_raster (bool): Add the `raster` extension and properties (default to False).
        with_eo (bool): Add the `eo` extension and properties (default to False).
        raster_max_size (int): Limit array size from which to get the raster statistics. Defaults to 1024.
        geom_densify_pts (int): Number of points to add to each edge to account for nonlinear edges transformation (Note: GDAL uses 21).
        geom_precision (int): If >= 0, geometry coordinates will be rounded to this number of decimal.

    Returns:
        pystac.Item: valid STAC Item.

    """
    properties = properties or {}
    extensions = extensions or []
    asset_roles = asset_roles or []

    with ExitStack() as ctx:
        if isinstance(source, (DatasetReader, DatasetWriter, WarpedVRT)):
            dataset = source
        else:
            dataset = ctx.enter_context(rasterio.open(source))

        if dataset.gcps[0]:
            src_dst = ctx.enter_context(
                WarpedVRT(
                    dataset,
                    src_crs=dataset.gcps[1],
                    src_transform=transform.from_gcps(dataset.gcps[0]),
                )
            )
        else:
            src_dst = dataset

        dataset_geom = get_dataset_geom(
            src_dst,
            densify_pts=geom_densify_pts,
            precision=geom_precision,
        )

        media_type = (
            get_media_type(dataset) if asset_media_type == "auto" else asset_media_type
        )

        if "start_datetime" not in properties and "end_datetime" not in properties:
            # Try to get datetime from https://gdal.org/user/raster_data_model.html#imagery-domain-remote-sensing
            dst_date = src_dst.get_tag_item("ACQUISITIONDATETIME", "IMAGERY")
            dst_datetime = str_to_datetime(dst_date) if dst_date else None

            input_datetime = (
                input_datetime or dst_datetime or datetime.datetime.utcnow()
            )

        # add projection properties
        if with_proj:
            extensions.append(
                f"https://stac-extensions.github.io/projection/{PROJECTION_EXT_VERSION}/schema.json",
            )

            properties.update(
                {
                    f"proj:{name}": value
                    for name, value in get_projection_info(src_dst).items()
                }
            )

        # add raster properties
        raster_info = {}
        if with_raster:
            extensions.append(
                f"https://stac-extensions.github.io/raster/{RASTER_EXT_VERSION}/schema.json",
            )

            raster_info = {
                "raster:bands": get_raster_info(dataset, max_size=raster_max_size)
            }

        eo_info: Dict[str, List] = {}
        if with_eo:
            extensions.append(
                f"https://stac-extensions.github.io/eo/{EO_EXT_VERSION}/schema.json",
            )

            eo_info = {"eo:bands": get_eobands_info(src_dst)}

            cloudcover = src_dst.get_tag_item("CLOUDCOVER", "IMAGERY")
            if cloudcover is not None:
                properties.update({"eo:cloud_cover": int(cloudcover)})

    # item
    item = pystac.Item(
        id=id or os.path.basename(dataset.name),
        geometry=dataset_geom["footprint"],
        bbox=dataset_geom["bbox"],
        collection=collection,
        stac_extensions=extensions,
        datetime=input_datetime,
        properties=properties,
    )

    # if we add a collection we MUST add a link
    if collection:
        item.add_link(
            pystac.Link(
                pystac.RelType.COLLECTION,
                collection_url or collection,
                media_type=pystac.MediaType.JSON,
            )
        )

    # item.assets
    if assets:
        for key, asset in assets.items():
            item.add_asset(key=key, asset=asset)

    else:
        item.add_asset(
            key=asset_name,
            asset=pystac.Asset(
                href=asset_href or dataset.name,
                media_type=media_type,
                extra_fields={**raster_info, **eo_info},
                roles=asset_roles,
            ),
        )

    return item