Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import pandas as pd
import numpy as np
from scipy.stats import gaussian_kde
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.compose import TransformedTargetRegressor
from sklearn.model_selection import GridSearchCV,TimeSeriesSplit
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import os
import pdb
def shift_series_(s, shift_range,t_unit):
s_shifts = [s.shift(-t_unit * shift, freq='D').rename(f'{s.name}_{shift}') for shift in range(*shift_range)]
return pd.concat(s_shifts, axis=1)
def create_it_matrix_lt(daily_input, t_length,t_unit, lead_t):
# This function takes as input the daily temperature, precipitation and runoff and generates the input-target matrix
# Read the daily input and extract runoff, evaporation, temperature and precipitation dataframe
if isinstance(daily_input, str):
daily_input = pd.read_csv(daily_input, index_col=0, parse_dates=True)
runoff = daily_input[['Q']]
temp = daily_input[[c for c in daily_input.columns if c[0] == 'T']]
prec = daily_input[[c for c in daily_input.columns if c[0] == 'P']]
evap = daily_input[[c for c in daily_input.columns if c[0] == 'E']]
# Compute the t_unit days average runoff
runoff_t_unit = runoff.rolling(t_unit, min_periods=t_unit).mean()
#runoff_t_unit_shifted = runoff_t_unit.shift(t_unit * lead_t,freq='D')
#pdb.set_trace()
# Compute the t_unit days average temperature
if not temp.empty:
temp_t_unit = temp.rolling(t_unit, min_periods=t_unit).mean()
temp_t_unit = pd.concat([shift_series_(temp_t_unit.loc[:, col], (-t_length + 1, 1-lead_t),t_unit) for col in temp_t_unit], axis=1)
# Compute the t_unit days sum precipitation
if not prec.empty:
prec_t_unit = prec.rolling(t_unit, min_periods=t_unit).sum()
prec_t_unit = pd.concat([shift_series_(prec_t_unit.loc[:, col], (-t_length + 1, 1-lead_t),t_unit) for col in prec_t_unit], axis=1)
# Compute the t_unit days sum evapotranspiration
if not evap.empty:
evap_t_unit = evap.rolling(t_unit, min_periods=t_unit).sum()
evap_t_unit = pd.concat([shift_series_(evap_t_unit.loc[:, col], (-t_length + 1, 1-lead_t),t_unit) for col in evap_t_unit], axis=1)
result = pd.concat([runoff_t_unit, temp_t_unit, prec_t_unit, evap_t_unit], axis=1).dropna()
#result = result.shift(-t_unit * lead_t,freq='D')
# Create the input-target matrix
return result
"""
def sf_input_matrix(input_matrix, seasonal_forecast, lead_time, member):
X = input_matrix.copy()
X = X.loc[X.index.is_month_end, :]
for offset in range(0, -lead_time, -1):
sf_dates = X.index + pd.offsets.MonthBegin(offset - 1)
X_columns = [c for c in X.columns if int(c.split('_')[1]) == offset]
sf_columns = [f'SF_{c.split("_")[0]}_lt{lead_time + offset}_m{member}' for c in X_columns]
X.loc[:, X_columns] = seasonal_forecast.loc[sf_dates, sf_columns].values
return X
"""
def svr_gridSearch(daily_input, t_length,t_unit, C_range=np.logspace(-3, 1, 5), epsilon_range=np.logspace(-5, 0, 5),
plot=False, n_splits=8):
# svr_gridSearch run the grid search on C and epsilon svr parameters.
# Read the input-target matrix
it_matrix = create_it_matrix(daily_input, t_length)
X = it_matrix.drop(columns='Q')
y = it_matrix['Q']
# Set up the splits respecting of the time-series nature of the dataset
tscv = TimeSeriesSplit(gap=t_unit,n_splits=n_splits, test_size=365)
tscv.split(X)
#pdb.set_trace()
# Set up the grid search parameters
svr_estimator = SVR(kernel='rbf', gamma='scale', cache_size=1000)
svr_estimator = make_pipeline(StandardScaler(),
TransformedTargetRegressor(regressor=svr_estimator, transformer=StandardScaler()))
parameters = {'transformedtargetregressor__regressor__C': C_range,
'transformedtargetregressor__regressor__epsilon': epsilon_range}
svr_model = GridSearchCV(svr_estimator, cv=tscv, param_grid=parameters, n_jobs=-1, verbose=1, refit=True)
# execute the grid search
svr_model.fit(X, y)
# Select the best C and epsilon
best_C = svr_model.best_params_['transformedtargetregressor__regressor__C']
best_epsilon = svr_model.best_params_['transformedtargetregressor__regressor__epsilon']
print(f'For {t_length} months of data input: Best estimator: C={best_C}, epsilon={best_epsilon}')
# Check if the best C (or epsion) is in the border of the grid
if best_C == max(C_range) or best_C == min(C_range):
print(f'Warning: best C found on the grid limit: C = {best_C}')
if best_epsilon == max(epsilon_range) or best_epsilon == min(epsilon_range):
print(f'Warning: best epsilon found on the grid limit: epsilon = {best_epsilon}')
print()
if plot:
# Gridsearch plot
plt.figure()
scores = svr_model.cv_results_['mean_test_score'].reshape(
len(svr_model.param_grid['transformedtargetregressor__regressor__C']),
len(svr_model.param_grid['transformedtargetregressor__regressor__epsilon']))
plt.imshow(scores)
plt.colorbar()
plt.xticks(np.arange(len(svr_model.param_grid['transformedtargetregressor__regressor__epsilon'])),
['%.3f' % a for a in svr_model.param_grid['transformedtargetregressor__regressor__epsilon']], rotation=45)
plt.yticks(np.arange(len(svr_model.param_grid['transformedtargetregressor__regressor__C'])),
['%.3f' % a for a in svr_model.param_grid['transformedtargetregressor__regressor__C']])
plt.xlabel('epsilon')
plt.ylabel('C')
plt.title(f'Heatmap for {t_length} months of input data')
plt.tight_layout()
# Scatterplot true vs. estimated training
plt.figure()
true_values = y
est_values = svr_model.predict(X)
xy = np.vstack([true_values, est_values])
z = gaussian_kde(xy)(xy)
idx = z.argsort()
x, y, z = true_values[idx], est_values[idx], z[idx]
plt.scatter(x, y, c=z)
plt.plot([min(true_values), max(true_values)], [min(true_values), max(true_values)], color='black')
plt.xlabel('True values')
plt.ylabel('Estimated values')
plt.title(f'Heatmap for {t_length} months of input data')
plt.gca().set_aspect('equal', adjustable='box')
plt.draw()
return {'C': best_C, 'epsilon': best_epsilon, 'score': svr_model.best_score_,
'best_estimator': svr_model.best_estimator_}
def feature_sel(daily_input):
# Find the best t_length and temperature/precipitation stations. Return score for each combination
gridSearch_results = []
for t_len in range(1, 12):
gridSearch_results.append(svr_gridSearch(daily_input,
t_len,
C_range=np.logspace(-2, 2, 6),
epsilon_range=np.logspace(-3, 0, 6),
plot=True))
return pd.DataFrame(data=gridSearch_results, index=range(1, 12))
# if isinstance(daily_input, str):
# daily_input = pd.read_csv('/home/mcallegari@eurac.edu/SECLI-FIRM/Mattia/SF_runoff/Zoccolo/inputs/daily_input.csv', index_col=0, parse_dates=True)
#
# temp_col = [c for c in daily_input.columns if c[0] == 'T']
# prec_col = [c for c in daily_input.columns if c[0] == 'P']
#
# for feat in itertools.product(temp_col, prec_col):
# for t_len in range(1, 12):
# svr_gridSearch(daily_input.loc[:, ('Q',) + feat], t_len, plot=False)
def training(daily_input, t_length=None, svr_C=None, svr_epsilon=None):
# This function takes as input the daily temperature, precipitation and runoff and train a model to predict the
# monthly mean runoff using a time series of temperature and precipitation of length t_length as input features
# Execute the feature selection if t_length is None
if t_length is None:
print('Finding the best input time series length...')
fs = feature_sel(daily_input)
fs_best = fs.loc[fs['score'].idxmax()]
svr_C, svr_epsilon = fs_best['C'], fs_best['epsilon']
t_length = fs_best.name
print(f'Best time series length: {t_length}. '
f'Best C={svr_C}, epsilon={svr_epsilon} (score={fs_best["score"]})')
svr_model = fs_best['best_estimator']
else:
it_matrix = create_it_matrix(daily_input, t_length)
X = it_matrix.drop(columns='Q')
y = it_matrix['Q']
# Fit the SVR with standardized input and target
svr_estimator = SVR(kernel='rbf', C=svr_C, epsilon=svr_epsilon, gamma='scale', cache_size=1000)
svr_model = make_pipeline(StandardScaler(),
TransformedTargetRegressor(regressor=svr_estimator, transformer=StandardScaler()))
svr_model.fit(X, y)
return svr_model
def monthly_climatology(daily_input,t_unit):
if isinstance(daily_input, str):
daily_input = pd.read_csv(daily_input, index_col=0, parse_dates=True)
monthly_mean_columns = [c for c in daily_input.columns if c[0] in ['Q', 'T']]
monthly_mean = daily_input.loc[:, monthly_mean_columns].groupby(by=daily_input.index.month).mean()
#remember to add ['E', 'P']
monthly_sum_columns = [c for c in daily_input.columns if c[0] in ['P','E']]
monthly_sum = daily_input.loc[:, monthly_sum_columns].groupby(by=daily_input.index.month).mean() * t_unit
#pdb.set_trace()
return pd.concat([monthly_mean, monthly_sum], axis=1)#[monthly_mean_columns,monthly_sum_columns]
def daily_climatology(daily_input,t_unit):
runoff = daily_input[['Q']]
temp = daily_input[[c for c in daily_input.columns if c[0] == 'T']]
prec = daily_input[[c for c in daily_input.columns if c[0] == 'P']]
evap = daily_input[[c for c in daily_input.columns if c[0] == 'E']]
# Compute the t_unit days average runoff
runoff_t_unit = runoff.rolling(t_unit, min_periods=t_unit).mean()
# Compute the t_unit days average temperature
if not temp.empty:
temp_t_unit = temp.rolling(t_unit, min_periods=t_unit).mean()
#temp_t_unit = pd.concat([shift_series_t_unitdays(temp_t_unit.loc[:, col], (-t_length + 1, 1)) for col in temp_t_unit], axis=1)
# Compute the t_unit days sum precipitation
if not prec.empty:
prec_t_unit = prec.rolling(t_unit, min_periods=t_unit).sum()
#prec_t_unit = pd.concat([shift_series_t_unitdays(prec_t_unit.loc[:, col], (-t_length + 1, 1)) for col in prec_t_unit], axis=1)
# Compute the t_unit days sum evapotranspiration
if not evap.empty:
evap_t_unit = evap.rolling(t_unit, min_periods=t_unit).sum()
#evap_t_unit = pd.concat([shift_series_t_unitdays(evap_t_unit.loc[:, col], (-t_length + 1, 1)) for col in evap_t_unit], axis=1)
daily_t_unit = pd.concat([runoff_t_unit, temp_t_unit, prec_t_unit, evap_t_unit], axis=1)
daily_mean = daily_t_unit.groupby(by=daily_t_unit.index.day_of_year).mean()
#pdb.set_trace()
return daily_mean
def loyo_cv_lc_nofor(daily_input,output_folder, t_length=None, svr_C=None, svr_epsilon=None,
lead_time=range(1, 8)):
# Compute the climatology for all the inputs
if isinstance(daily_input, str):
daily_input = pd.read_csv(daily_input, index_col=0, parse_dates=True)
monthly_clim = monthly_climatology(daily_input)
# Create the total input-target matrix and select the start and end year for the loo-cv
it_matrix = create_it_matrix(daily_input, t_length)
year_start = min(it_matrix.index[(it_matrix.index.month == 1) & (it_matrix.index.day == 31)].year)
year_end = max(it_matrix.index[(it_matrix.index.month == 12) & (it_matrix.index.day == 31)].year)
# For each training length and each year train a different model and test with different configurations
for Nyears_training in range(1, year_end-year_start+1):
prediction = []
for year in range(year_start, year_end+1):
print(f'Testing on year {year}; Training years: {Nyears_training} ...')
# Drop the years that should not be considered in the training and train the model
daily_input_loo = daily_input.copy()
training_years = (list(range(year+1, year_end+1)) + list(range(year_start, year)))[-Nyears_training:]
daily_input_loo.loc[[i for i in daily_input.index if i.year not in training_years], 'Q'] = np.nan
# daily_input_loo.loc[daily_input.index.year == year, 'Q'] = np.nan
svr_model = training(daily_input_loo, t_length, svr_C, svr_epsilon)
# Select the dates on which to execute the prediction
test_dates = daily_input.index[daily_input.index.is_month_end & (daily_input.index.year == year)]
# Save the true runoff values
y = {}
y['true_runoff'] = daily_input.loc[daily_input.index.year == year, 'Q'].resample("M").mean().values
# Compute runoff monthly climatology considering the subset used for training the svr
y['runoff_clim'] = [daily_input_loo.loc[daily_input_loo.index.month == m, 'Q'].mean() for m in range(1, 13)]
# Predict using true temperature and precipitation (no forecast)
X_trueTP = it_matrix.loc[test_dates, :].drop(columns='Q')
y['trueTP'] = svr_model.predict(X_trueTP)
# Predict using temperature and precipitation climatology (no forecast) for all lead times
X_climTP = X_trueTP.copy()
for lt in lead_time:
change_dest = [c for c in X_climTP.columns if c.split('_')[1] == str(-lt + 1)]
change_source = [c.split('_')[0] for c in change_dest]
X_climTP.loc[:, change_dest] = monthly_clim.loc[(test_dates - pd.offsets.MonthBegin(lt)).month, change_source].values
y[f'climTP_lt{lt}'] = svr_model.predict(X_climTP)
'''
# Predict using seasonal forecast with different lead times
for lt in lead_time:
for m in range(1, 26):
X_sf = sf_input_matrix(X_trueTP, seasonal_forecast, lt, m)
y[f'sfTP_m{m}_lt{lt}'] = svr_model.predict(X_sf)
'''
# Store the results in a dataframe
prediction.append(pd.DataFrame(data=y, index=test_dates-pd.offsets.MonthBegin()))
pd.concat(prediction, axis=0).to_csv(
os.path.join(output_folder, f'Runoff_forecast_{Nyears_training}_trainingyears.csv'))
def loyo_cv_lc(daily_input, seasonal_forecast, output_folder, t_length=None, svr_C=None, svr_epsilon=None,
lead_time=range(1, 8)):
# Compute the climatology for all the inputs
if isinstance(daily_input, str):
daily_input = pd.read_csv(daily_input, index_col=0, parse_dates=True)
monthly_clim = monthly_climatology(daily_input)
# Read the seasonal forecast of temperature and precipitation
if isinstance(seasonal_forecast, str):
seasonal_forecast = pd.read_csv(seasonal_forecast, index_col=0, parse_dates=True)
# Create the total input-target matrix and select the start and end year for the loo-cv
it_matrix = create_it_matrix(daily_input, t_length)
year_start = min(it_matrix.index[(it_matrix.index.month == 1) & (it_matrix.index.day == 31)].year)
year_end = max(it_matrix.index[(it_matrix.index.month == 12) & (it_matrix.index.day == 31)].year)
# For each training length and each year train a different model and test with different configurations
for Nyears_training in range(1, year_end-year_start+1):
prediction = []
for year in range(year_start, year_end+1):
print(f'Testing on year {year}; Training years: {Nyears_training} ...')
# Drop the years that should not be considered in the training and train the model
daily_input_loo = daily_input.copy()
training_years = (list(range(year+1, year_end+1)) + list(range(year_start, year)))[-Nyears_training:]
daily_input_loo.loc[[i for i in daily_input.index if i.year not in training_years], 'Q'] = np.nan
# daily_input_loo.loc[daily_input.index.year == year, 'Q'] = np.nan
svr_model = training(daily_input_loo, t_length, svr_C, svr_epsilon)
# Select the dates on which to execute the prediction
test_dates = daily_input.index[daily_input.index.is_month_end & (daily_input.index.year == year)]
# Save the true runoff values
y = {}
y['true_runoff'] = daily_input.loc[daily_input.index.year == year, 'Q'].resample("M").mean().values
# Compute runoff monthly climatology considering the subset used for training the svr
y['runoff_clim'] = [daily_input_loo.loc[daily_input_loo.index.month == m, 'Q'].mean() for m in range(1, 13)]
# Predict using true temperature and precipitation (no forecast)
X_trueTP = it_matrix.loc[test_dates, :].drop(columns='Q')
y['trueTP'] = svr_model.predict(X_trueTP)
# Predict using temperature and precipitation climatology (no forecast) for all lead times
X_climTP = X_trueTP.copy()
for lt in lead_time:
change_dest = [c for c in X_climTP.columns if c.split('_')[1] == str(-lt + 1)]
change_source = [c.split('_')[0] for c in change_dest]
X_climTP.loc[:, change_dest] = monthly_clim.loc[(test_dates - pd.offsets.MonthBegin(lt)).month, change_source].values
y[f'climTP_lt{lt}'] = svr_model.predict(X_climTP)
# Predict using seasonal forecast with different lead times
for lt in lead_time:
for m in range(1, 26):
X_sf = sf_input_matrix(X_trueTP, seasonal_forecast, lt, m)
y[f'sfTP_m{m}_lt{lt}'] = svr_model.predict(X_sf)
# Store the results in a dataframe
prediction.append(pd.DataFrame(data=y, index=test_dates-pd.offsets.MonthBegin()))
pd.concat(prediction, axis=0).to_csv(
os.path.join(output_folder, f'Runoff_forecast_{Nyears_training}_trainingyears.csv'))
# -----------------------------------------------------------------------
# Read and plot results
def root_mean_squared_error(y_true, y_pred):
return np.sqrt(mean_squared_error(y_true, y_pred))
def smape(A, F):
return 100/len(A) * np.sum(2 * np.abs(F - A) / (np.abs(A) + np.abs(F)))
def monthly_rmse(fileName, plot=True):
# Open the result file
runoff = pd.read_csv(fileName, index_col=0, parse_dates=True)
# Create the ensamble mean
for lt in range(1, 8):
columns = [c for c in runoff.columns if 'sfTP_m' in c and f'lt{lt}' in c]
runoff[f'sfTP_em_lt{lt}'] = runoff.loc[:, columns].mean(axis=1)
# Compute the RMSE for each month
runoff_error = []
for m in range(1, 12):
runoff_m = runoff.loc[runoff.index.month == m, :]
runoff_error.append(
runoff_m.apply(lambda y_pred: root_mean_squared_error(runoff_m['true_runoff'], y_pred), axis=0)
)
runoff_error = pd.DataFrame(data=runoff_error, index=range(1, 12))
if plot:
plt.figure()
for lt in range(1, 8):
runoff_error.loc[:, f'sfTP_em_lt{lt}'].plot(marker='o', label=f'lead_time={lt}')
runoff_error.loc[:, 'runoff_clim'].plot(marker='o', color='black', label='climatology', linewidth=3)
runoff_error.loc[:, 'trueTP'].plot(marker='o', color='red', label='era5', linewidth=3)
plt.legend()
plt.ylabel('RMSE ($m^3/s$)')
plt.xlabel('Month')
def plot_it_matrix(daily_input, var, common_ylim=True):
# ## Plot each variable of the input-target matrix
# Create the input-target matrix from the daily_input
it_matrix = create_it_matrix(daily_input, 1).rename(columns=lambda c: c[:2])
# Create the ylabel dictionary
plt_ylabel = {'P': 'Total precipitation (m)', 'T': 'Mean temperature (K)', 'Q': 'Runoff ($m^3/s$)'}
# Set the ylim
if common_ylim:
selected_vars = it_matrix.loc[:, [c for c in it_matrix.columns if c[0] == var[0]]].values
b = (selected_vars.max() - selected_vars.min()) * 0.03
plt_ylim = (selected_vars.min()-b, selected_vars.max()+b)
# Plot each year with a different color using the day of the year as x axis
plt.figure()
for y in range(it_matrix.index.year.min(), it_matrix.index.year.max() + 1):
curr = it_matrix[it_matrix.index.year == y]
curr.set_index(curr.index.dayofyear, inplace=True)
curr[var].plot(label='_nolegend_')
# Plot the daily climatology
clim = it_matrix[var].groupby(it_matrix.index.dayofyear).mean().loc[1:365]
clim.plot(label='Mean', color='black', linewidth=5)
# Set the figure properties
if common_ylim:
plt.ylim(plt_ylim)
plt.xlabel('Day')
plt.ylabel(plt_ylabel[var[0]])
plt.legend()
def lead_time_rmse(fileName):
# fileName = '/home/mcallegari@eurac.edu/SECLI-FIRM/Mattia/SF_runoff/Zoccolo/Results/Learning_curve/Runoff_forecast_26_trainingyears.csv'
# Open the result file
runoff = pd.read_csv(fileName, index_col=0, parse_dates=True)
# Create the ensamble mean
for lt in range(1, 8):
columns = [c for c in runoff.columns if 'sfTP_m' in c and f'lt{lt}' in c]
runoff[f'sfTP_em_lt{lt}'] = runoff.loc[:, columns].mean(axis=1)
# Compute the RMSE
runoff_error = runoff.apply(lambda y_pred: root_mean_squared_error(runoff['true_runoff'], y_pred), axis=0)
plt.figure()
plt.plot([1, 7], [runoff_error['runoff_clim']]*2, color='black', label='runoff climatology')
plt.plot([1, 7], [runoff_error['trueTP']] * 2, color='red', label='era5')
plt.plot(range(1, 8), runoff_error[[f'climTP_lt{lt}' for lt in range(1, 8)]], marker='o', label='era5 climatology')
plt.plot(range(1, 8), runoff_error[[f'sfTP_em_lt{lt}' for lt in range(1, 8)]], marker='o', label='SEAS5 ensamble mean')
plt.plot(range(1, 8), runoff_error[[f'sfTP_m1_lt{lt}' for lt in range(1, 8)]], color='C1', alpha=0.5, label='SEAS5 members')
for m in range(2, 26):
plt.plot(range(1, 8), runoff_error[[f'sfTP_m{m}_lt{lt}' for lt in range(1, 8)]], color='C1', alpha=0.5)
plt.legend()
plt.xlabel('Lead time (months)')
plt.ylabel('RMSE ($m^3/s$)')
def spatial_avg_daily_input(daily_input):
t_columns = [c for c in daily_input.columns if c[0] =='T']
daily_input['T'] = daily_input[t_columns].mean(axis=1)
daily_input=daily_input.drop(columns = t_columns)
e_columns = [c for c in daily_input.columns if c[0] =='E']
daily_input['E'] = daily_input[e_columns].mean(axis=1)
daily_input=daily_input.drop(columns = e_columns)
p_columns = [c for c in daily_input.columns if c[0] =='P']
daily_input['P'] = daily_input[p_columns].mean(axis=1)
daily_input=daily_input.drop(columns = p_columns)
return daily_input;
def spatial_stats_daily_input(daily_input):
new_daily_input=pd.DataFrame(daily_input.Q)
t_columns = [c for c in daily_input.columns if c[0] =='T']
t_vars=daily_input[t_columns]
new_daily_input.loc[:,'T'] = t_vars.mean(axis=1)
new_daily_input.loc[:,'T5']=t_vars.quantile(q=0.05,axis=1)
new_daily_input.loc[:,'T25']=t_vars.quantile(q=0.25,axis=1)
new_daily_input.loc[:,'T75']=t_vars.quantile(q=0.75,axis=1)
new_daily_input.insert(loc=5,column='T95',value=t_vars.quantile(q=0.95,axis=1))
e_columns = [c for c in daily_input.columns if c[0] =='E']
e_vars=daily_input[e_columns]
new_daily_input.loc[:,'E'] = e_vars.mean(axis=1)
new_daily_input.loc[:,'E5']=e_vars.quantile(q=0.05,axis=1)
new_daily_input.loc[:,'E25']=e_vars.quantile(q=0.25,axis=1)
new_daily_input.loc[:,'E75']=e_vars.quantile(q=0.75,axis=1)
new_daily_input.loc[:,'E95']=e_vars.quantile(q=0.95,axis=1)
p_columns = [c for c in daily_input.columns if c[0] =='P']
p_vars=daily_input[p_columns]
new_daily_input.loc[:,'P'] = p_vars.mean(axis=1)
new_daily_input.loc[:,'P5']=p_vars.quantile(q=0.05,axis=1)
new_daily_input.loc[:,'P25']=p_vars.quantile(q=0.25,axis=1)
new_daily_input.loc[:,'P75']=p_vars.quantile(q=0.75,axis=1)
new_daily_input.loc[:,'P95']=p_vars.quantile(q=0.95,axis=1)
return new_daily_input
def create_gap(train_index,test_index,gap):
right=((train_index+1 == test_index[0]).sum()==1) and ((train_index-1 == test_index[-1]).sum()==0)
centre=((train_index+1 == test_index[0]).sum()==1) and ((train_index-1 == test_index[-1]).sum()==1)
left = ((train_index+1 == test_index[0]).sum()==0) and ((train_index-1 == test_index[-1]).sum()==1)
if right:
train_index=train_index[0:-gap]
if left:
train_index=train_index[gap:]
if centre:
pos = np.where(train_index+1 == test_index[0])[0][0]
train_index=np.concatenate((train_index[:pos-gap],train_index[pos+gap:]),axis=0)
return train_index;
def compute_anomalies(climatologies,pred):
#compute real climatology
anomalies=pd.DataFrame(pred.true_runoff-pred.runoff_clim,columns=['true_runoff'])
#get the climatology of prediction on the wanted days
clim_on_test_dates = pd.DataFrame(climatologies.loc[anomalies.index.day_of_year])
#create an array with the proper shape
repeated_clim=np.repeat((np.array(clim_on_test_dates.prediction)[...,np.newaxis]),
pred.shape[1]-2,
axis=1)
#subtract clim to predictions
anomalies_pred= pred.iloc[:,2:]- repeated_clim
#put together real and predicted anomalies
anomalies=pd.concat([anomalies,anomalies_pred],axis=1)
return anomalies