Newer
Older
* LAMBDA PROGRAMMING LABORATORY
*
* For each exercise, develop a solution using Java SE 8 Lambda/Streams
* and remove the @Ignore tag. Then run the tests.
*
* In NetBeans, Ctrl-F6 will run the project's tests, which default to
* the unsolved exercises (as opposed to the solutions). Alt-F6 [PC] or
* or Cmd-F6 [Mac] will run just the tests in the currently selected file.
*
* Several of the exercises read data from a text file. The field named
* "reader" is a BufferedReader which will be opened for you on the text file.
* In any exercise that refers to reading from the text file, you can simply
* use the "reader" variable without worry about opening or closing it.
* This is setup by JUnit using the @Before and @After methods at the bottom of
* this file. The text file is "SonnetI.txt" (Shakespeare's first sonnet) which
* is located at the root of this NetBeans project.
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.math.BigInteger;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.IntSummaryStatistics;
import java.util.List;
import java.util.Map;
import java.util.OptionalInt;
import java.util.Random;
import java.util.Set;
Stuart Marks
committed
import java.util.function.IntConsumer;
import java.util.stream.Collector;
Stuart Marks
committed
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;
import org.junit.After;
import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
public class Exercises {
// ========================================================
// INTERMEDIATE STREAM PIPELINES
// ========================================================
/**
* Convert a list of strings into a list of characters.
*/
@Test @Ignore
public void ex13_stringsToCharacters() {
List<String> input = Arrays.asList("alfa", "bravo", "charlie");
List<Character> result = null; // TODO
assertEquals("[a, l, f, a, b, r, a, v, o, c, h, a, r, l, i, e]", result.toString());
assertTrue(result.stream().allMatch(x -> x instanceof Character));
}
// Hint 1:
// <editor-fold defaultstate="collapsed">
// Use Stream.flatMap().
// </editor-fold>
// Hint 2:
// <editor-fold defaultstate="collapsed">
// Pay attention to the return type of String.chars() and boxing conversion.
// </editor-fold>
/**
* Collect all the words from the text file into a list.
* Use String.split(REGEXP) to split a string into words.
* REGEXP is defined at the bottom of this file.
* @throws IOException
*/
@Test @Ignore
public void ex14_listOfAllWords() throws IOException {
List<String> output = null; // TODO
assertEquals(
Arrays.asList(
"From", "fairest", "creatures", "we", "desire", "increase",
"That", "thereby", "beauty's", "rose", "might", "never", "die",
"But", "as", "the", "riper", "should", "by", "time", "decease",
"His", "tender", "heir", "might", "bear", "his", "memory",
"But", "thou", "contracted", "to", "thine", "own", "bright", "eyes",
"Feed'st", "thy", "light's", "flame", "with", "self", "substantial", "fuel",
"Making", "a", "famine", "where", "abundance", "lies",
"Thy", "self", "thy", "foe", "to", "thy", "sweet", "self", "too", "cruel",
"Thou", "that", "art", "now", "the", "world's", "fresh", "ornament",
"And", "only", "herald", "to", "the", "gaudy", "spring",
"Within", "thine", "own", "bud", "buriest", "thy", "content",
"And", "tender", "churl", "mak'st", "waste", "in", "niggarding",
"Pity", "the", "world", "or", "else", "this", "glutton", "be",
"To", "eat", "the", "world's", "due", "by", "the", "grave", "and", "thee"),
output);
}
// Hint:
// <editor-fold defaultstate="collapsed">
// Use Stream.flatMap().
// </editor-fold>
* Read the words from the text file, and create a list containing the words
* of length 8 or longer, converted to lower case, and sorted alphabetically.
*
* @throws IOException
public void ex15_longLowerCaseSortedWords() throws IOException {
List<String> output = null; // TODO
assertEquals(
Arrays.asList(
"abundance", "beauty's", "contracted", "creatures",
"increase", "niggarding", "ornament", "substantial"),
output);
}
// Hint:
// <editor-fold defaultstate="collapsed">
// Use Stream.sorted().
// </editor-fold>
* Read the words from the text file, and create a list containing the words
* of length 8 or longer, converted to lower case, and sorted reverse alphabetically.
* (Same as above except for reversed sort order.)
*
* @throws IOException
public void ex16_longLowerCaseReverseSortedWords() throws IOException {
List<String> result = null; // TODO
assertEquals(
Arrays.asList(
"substantial", "ornament", "niggarding", "increase",
"creatures", "contracted", "beauty's", "abundance"),
result);
}
// Hint:
// <editor-fold defaultstate="collapsed">
// Use Comparator.reverseOrder().
// </editor-fold>
* Read words from the text file, and sort unique, lower-cased words by length,
* then alphabetically within length, and place the result into an output list.
*
* @throws IOException
public void ex17_sortedLowerCaseDistinctByLengthThenAlphabetically() throws IOException {
List<String> result = null; // TODO
assertEquals(
Arrays.asList(
"a", "as", "be", "by", "in", "or", "to", "we",
"and", "art", "bud", "but", "die", "due", "eat", "foe",
"his", "now", "own", "the", "thy", "too", "bear", "else",
"eyes", "from", "fuel", "heir", "lies", "only",
"pity", "rose", "self", "that", "thee", "this", "thou",
"time", "with", "churl", "cruel", "flame", "fresh", "gaudy",
"grave", "might", "never", "riper", "sweet", "thine",
"waste", "where", "world", "bright", "desire", "famine",
"herald", "mak'st", "making", "memory", "should", "spring",
"tender", "within", "buriest", "content", "decease",
"fairest", "feed'st", "glutton", "light's", "thereby", "world's", "beauty's",
"increase", "ornament", "abundance", "creatures", "contracted", "niggarding",
"substantial"),
result);
}
Stuart Marks
committed
// Hint 1:
// <editor-fold defaultstate="collapsed">
// Use Stream.distinct().
// </editor-fold>
Stuart Marks
committed
// Hint 2:
// <editor-fold defaultstate="collapsed">
// Use Comparator.theComparing().
// </editor-fold>
Stuart Marks
committed
/**
* Count the total number of words and the number of distinct, lower case
* words in the text file, in one pass.
Stuart Marks
committed
*/
@Test @Ignore
public void ex18_countTotalAndDistinctWords() {
Stuart Marks
committed
long distinctCount = 0; // TODO
long totalCount = 0; // TODO
Stuart Marks
committed
assertEquals("distinct count", 81, distinctCount);
assertEquals("total count", 107, totalCount);
}
// Hint 1:
// <editor-fold defaultstate="collapsed">
// Use Stream.peek().
// </editor-fold>
// Hint 2:
// <editor-fold defaultstate="collapsed">
// Use LongAdder or AtomicLong/AtomicInteger to allow peek() to have side effects.
// </editor-fold>
// ========================================================
// ADVANCED STREAMS: REDUCTION, COLLECTORS, AND GROUPING
// ========================================================
* Compute the value of 21!, that is, 21 factorial. This value is larger than
* Long.MAX_VALUE, so you must use BigInteger.
*/
@Test @Ignore
public void ex19_bigFactorial() {
BigInteger result = BigInteger.ONE; // TODO
assertEquals(new BigInteger("51090942171709440000"), result);
}
// Hint:
// <editor-fold defaultstate="collapsed">
// Use LongStream and reduction.
// </editor-fold>
/**
* Get the last word in the text file.
* @throws IOException
*/
@Test @Ignore
public void ex20_getLastWord() throws IOException {
List<String> result = null; // TODO
assertEquals("thee", result);
}
// Hint:
// <editor-fold defaultstate="collapsed">
// Use Stream.reduce().
// </editor-fold>
/**
* Categorize the words from the text file into a map, where the map's key
* is the length of each word, and the value corresponding to a key is a
* list of words of that length. Don't bother with uniqueness or lower-
* casing the words.
* @throws IOException
*/
@Test @Ignore
public void ex21_mapLengthToWordList() throws IOException {
Map<Integer, List<String>> result = null; // TODO
assertEquals(10, result.get(7).size());
assertEquals(new HashSet<>(Arrays.asList("beauty's", "increase", "ornament")), new HashSet<>(result.get(8)));
assertEquals(new HashSet<>(Arrays.asList("abundance", "creatures")), new HashSet<>(result.get(9)));
assertEquals(new HashSet<>(Arrays.asList("contracted", "niggarding")), new HashSet<>(result.get(10)));
assertEquals(Arrays.asList("substantial"), result.get(11));
assertFalse(result.containsKey(12));
}
// Hint:
// <editor-fold defaultstate="collapsed">
// Use Collectors.groupingBy().
// </editor-fold>
* Categorize the words from the text file into a map, where the map's key
* is the length of each word, and the value corresponding to a key is a
* count of words of that length. Don't bother with uniqueness or lower-
* casing the words. This is the same as the previous exercise except
* the map values are the count of words instead of a list of words.
* @throws IOException
*/
@Test @Ignore
public void ex22_mapLengthToWordCount() throws IOException {
Map<Integer, Long> result = null; // TODO
assertEquals( 1L, (long)result.get(1));
assertEquals(11L, (long)result.get(2));
assertEquals(28L, (long)result.get(3));
assertEquals(21L, (long)result.get(4));
assertEquals(16L, (long)result.get(5));
assertEquals(12L, (long)result.get(6));
assertEquals(10L, (long)result.get(7));
assertEquals( 3L, (long)result.get(8));
assertEquals( 2L, (long)result.get(9));
assertEquals( 2L, (long)result.get(10));
assertEquals( 1L, (long)result.get(11));
IntSummaryStatistics stats = result.keySet().stream().mapToInt(i -> i).summaryStatistics();
assertEquals("min key", 1, stats.getMin());
assertEquals("max key", 11, stats.getMax());
}
// Hint 1:
// <editor-fold defaultstate="collapsed">
// Use the "downstream" overload of Collectors.groupingBy().
// </editor-fold>
// Hint 2:
// <editor-fold defaultstate="collapsed">
// Use Collectors.counting().
// </editor-fold>
* Gather the words from the text file into a map, accumulating a count of
* the number of occurrences of each word. Don't worry about upper case and
* lower case. Extra challenge: implement two solutions, one that uses
* groupingBy() and the other that uses toMap().
* @throws IOException
*/
@Test @Ignore
public void ex23_wordFrequencies() throws IOException {
assertEquals(2L, (long)result.get("tender"));
assertEquals(6L, (long)result.get("the"));
assertEquals(1L, (long)result.get("churl"));
assertEquals(2L, (long)result.get("thine"));
assertEquals(1L, (long)result.get("world"));
assertEquals(4L, (long)result.get("thy"));
assertEquals(3L, (long)result.get("self"));
assertFalse(result.containsKey("lambda"));
}
// Hint 1:
// <editor-fold defaultstate="collapsed">
// For Collectors.groupingBy(), consider that each word needs to
// be categorized by itself.
// </editor-fold>
// Hint 2:
// <editor-fold defaultstate="collapsed">
// For Collectors.toMap(), the first occurrence of a word should be mapped to 1.
// </editor-fold>
* From the words in the text file, create nested maps, where the outer map is a
* map from the first letter of the word to an inner map. (Use a string of length
* one as the key.) The inner map, in turn, is a mapping from the length of the
* word to a list of words with that length. Don't bother with any lowercasing
* or uniquifying of the words.
*
* For example, given the words "foo bar baz bazz foo" the string
* representation of the result would be:
* {b={3=[bar, baz], 4=[bazz]}, f={3=[foo, foo]}}
* @throws IOException
*/
@Test @Ignore
public void ex24_nestedMaps() throws IOException {
Map<String, Map<Integer, List<String>>> result = null; // TODO
assertEquals("[abundance]", result.get("a").get(9).toString());
assertEquals("[by, be, by]", result.get("b").get(2).toString());
assertEquals("[flame, fresh]", result.get("f").get(5).toString());
assertEquals("[gaudy, grave]", result.get("g").get(5).toString());
assertEquals("[should, spring]", result.get("s").get(6).toString());
assertEquals("[substantial]", result.get("s").get(11).toString());
assertEquals("[the, thy, thy, thy, too, the, the, thy, the, the, the]",
result.get("t").get(3).toString());
assertEquals("[where, waste, world]", result.get("w").get(5).toString());
}
// Hint 1:
// <editor-fold defaultstate="collapsed">
// The nested map structure that's the desired is the result of applying
// a "downstream" collector that's the same operation as the first-level collector.
// </editor-fold>
// Hint 2:
// <editor-fold defaultstate="collapsed">
// Both collection operations are Collectors.groupingBy().
// </editor-fold>
/**
* Given a stream of strings, accumulate (collect) them into the result string
* by inserting the input string at both the beginning and end. For example, given
* input strings "x" and "y" the result should be "yxxy". Note: the input stream
* is a parallel stream, so you MUST write a proper combiner function to get the
* correct result.
*/
@Test @Ignore
public void ex25_insertBeginningAndEnd() {
Stream<String> input = Arrays.asList(
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
"k", "l", "m", "n", "o", "p", "q", "r", "s", "t")
.parallelStream();
String result = input.collect(null, null, null); // TODO
assertEquals("tsrqponmlkjihgfedcbaabcdefghijklmnopqrst", result);
}
// Hint 1:
// <editor-fold defaultstate="collapsed">
// The combiner function must take its second argument and merge
// it into the first argument, mutating the first argument.
// </editor-fold>
// Hint 2:
// <editor-fold defaultstate="collapsed">
// The second argument to the combiner function happens AFTER the first
// argument in encounter order, so the second argument needs to be split
// in half and prepended/appended to the first argument.
// </editor-fold>
// ========================================================
// ADVANCED STREAMS: POTPOURRI
// ========================================================
/**
* Denormalize this map. The input is a map whose keys are the number of legs of an animal
* and whose values are lists of names of animals. Run through the map and generate a
* "denormalized" list of strings describing the animal, with the animal's name separated
* by a colon from the number of legs it has. The ordering in the output list is not
* considered significant.
*
* Input is Map<Integer, List<String>>:
* { 4=["ibex", "hedgehog", "wombat"],
* 6=["ant", "beetle", "cricket"],
* ...
* }
*
* Output should be a List<String>:
* [ "ibex:4",
* "hedgehog:4",
* "wombat:4",
* "ant:6",
* "beetle:6",
* "cricket:6",
* ...
* ]
public void ex26_denormalizeMap() {
Map<Integer, List<String>> input = new HashMap<>();
input.put(4, Arrays.asList("ibex", "hedgehog", "wombat"));
input.put(6, Arrays.asList("ant", "beetle", "cricket"));
input.put(8, Arrays.asList("octopus", "spider", "squid"));
input.put(10, Arrays.asList("crab", "lobster", "scorpion"));
input.put(750, Arrays.asList("millipede"));
List<String> result = null; // TODO
assertTrue(result.contains("ibex:4"));
assertTrue(result.contains("hedgehog:4"));
assertTrue(result.contains("wombat:4"));
assertTrue(result.contains("ant:6"));
assertTrue(result.contains("beetle:6"));
assertTrue(result.contains("cricket:6"));
assertTrue(result.contains("octopus:8"));
assertTrue(result.contains("spider:8"));
assertTrue(result.contains("squid:8"));
assertTrue(result.contains("crab:10"));
assertTrue(result.contains("lobster:10"));
assertTrue(result.contains("scorpion:10"));
assertTrue(result.contains("millipede:750"));
}
// Hint 1:
// <editor-fold defaultstate="collapsed">
// There are several ways to approach this. You could use a stream of map keys,
// a stream of map entries, or nested forEach() methods.
// </editor-fold>
// Hint 2:
// <editor-fold defaultstate="collapsed">
// If you use streams, consider using Stream.flatMap().
// </editor-fold>
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
// ========================================================
// NEW FOR 2016
// ========================================================
/**
* Invert a "multi-map". (P. Sandoz)
*
* Given a Map<X, Set<Y>>, convert it to Map<Y, Set<X>>.
*/
@Test @Ignore
public void ex27_invertMultiMap() {
Map<String, List<Integer>> input = new HashMap<>();
input.put("a", Arrays.asList(1, 2));
input.put("b", Arrays.asList(2, 3));
input.put("c", Arrays.asList(1, 3));
input.put("d", Arrays.asList(1, 4));
input.put("e", Arrays.asList(2, 4));
input.put("f", Arrays.asList(3, 4));
Map<Integer, List<String>> result = null; // TODO
assertEquals(new HashSet<>(Arrays.asList("a", "c", "d")), result.get(1));
assertEquals(new HashSet<>(Arrays.asList("a", "b", "e")), result.get(2));
assertEquals(new HashSet<>(Arrays.asList("b", "c", "f")), result.get(3));
assertEquals(new HashSet<>(Arrays.asList("d", "e", "f")), result.get(4));
assertEquals(4, result.size());
Stuart Marks
committed
}
/**
* Select from the input list each word that longer than the immediately
* preceding word. Include the first word, since it is longer than the
* (nonexistent) word that precedes it.
*
* XXX - compare to ex11
*/
@Test @Ignore
public void ex28_selectLongerThanPreceding() {
List<String> input = Arrays.asList(
"alfa", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel");
List<String> result = null; // TODO
assertEquals("[alfa, bravo, charlie, foxtrot, hotel]", result.toString());
}
// Hint:
Stuart Marks
committed
// <editor-fold defaultstate="collapsed">
// Instead of a stream of words (Strings), run an IntStream of positions.
Stuart Marks
committed
// </editor-fold>
/**
* Generate a list of words that is the concatenation of each adjacent
* pair of words in the input list. For example, if the input is
* [x, y, z]
* the output should be
* [xy, yz]
*
* XXX - compare to ex11
*/
@Test @Ignore
public void ex29_concatenateAdjacent() {
List<String> input = Arrays.asList(
"alfa", "bravo", "charlie", "delta", "echo", "foxtrot");
List<String> result = null; // TODO
assertEquals("[alfabravo, bravocharlie, charliedelta, deltaecho, echofoxtrot]",
result.toString());
}
// Hint:
Stuart Marks
committed
// <editor-fold defaultstate="collapsed">
// Instead of a stream of words (Strings), run an IntStream of positions.
Stuart Marks
committed
// </editor-fold>
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/**
* Select the longest words from the input list. That is, select the words
* whose lengths are equal to the maximum word length. For this exercise,
* it's easiest to perform two passes over the input list.
*
* XXX - compare to ex09 and ex10
*/
@Test @Ignore
public void ex30_selectLongestWords() {
List<String> input = Arrays.asList(
"alfa", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel");
List<String> result = null; // TODO
assertEquals("[charlie, foxtrot]", result.toString());
}
/**
* Select the longest words from the input stream. That is, select the words
* whose lengths are equal to the maximum word length. For this exercise,
* you must compute the result in a single pass over the input stream.
*
* XXX - compare to ex30
*/
@Test @Ignore
public void ex31_selectLongestWordsOnePass() {
Stream<String> input = Stream.of(
"alfa", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel");
List<String> result = null; // TODO
assertEquals("[charlie, foxtrot]", result.toString());
}
/**
* Create a list of non-overlapping sublists of the input list, where each
* sublist (except for the first one) starts with a word whose first character is a ":".
* For example, given the input list
* [w, x, :y, z]
* the output should be
* [[w, x], [:y, z]]
*/
@Test @Ignore
public void ex32_partitionIntoSublists() {
List<String> input = Arrays.asList(
"alfa", "bravo", ":charlie", "delta", ":echo", ":foxtrot", "golf", "hotel");
List<List<String>> result = null; // TODO
assertEquals("[[alfa, bravo], [:charlie, delta], [:echo], [:foxtrot, golf, hotel]]",
result.toString());
}
/**
* Given a stream of integers, compute separate sums of the even and odd values
* in this stream. Since the input is a stream, this necessitates making a single
* pass over the input.
*/
@Test @Ignore
public void ex33_separateOddEvenSums() {
IntStream input = new Random(987523).ints(20, 0, 100);
int sumEvens = 0; // TODO
int sumOdds = 0; // TODO
assertEquals(516, sumEvens);
assertEquals(614, sumOdds);
}
// Hint:
Stuart Marks
committed
// <editor-fold defaultstate="collapsed">
// Use Collectors.partitioningBy().
Stuart Marks
committed
// </editor-fold>
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/**
* Given a string, split it into a list of strings consisting of
* consecutive characters from the original string. Note: this is
* similar to Python's itertools.groupby function, but it differs
* from Java's Collectors.groupingBy() collector.
*
* XXX - compare to ex32
*/
@Test @Ignore
public void ex34_splitCharacterRuns() {
String input = "aaaaabbccccdeeeeeeaaafff";
List<String> result = null; // TODO
assertEquals("[aaaaa, bb, cccc, d, eeeeee, aaa, fff]", result.toString());
}
/**
* Given a string, find the substring containing the longest run of consecutive,
* equal characters.
*
* XXX - compare to ex34
*/
@Test @Ignore
public void ex35_longestCharacterRuns() {
String input = "aaaaabbccccdeeeeeeaaafff";
String result = null; // TODO
assertEquals("eeeeee", result);
}
/**
* Given a parallel stream of strings, collect them into a collection in reverse order.
* Since the stream is parallel, you MUST write a proper combiner function in order to get
* the correct result.
*/
@Test @Ignore
public void ex36_reversingCollector() {
Stream<String> input =
IntStream.range(0, 100).mapToObj(String::valueOf).parallel();
Collection<String> result =
input.collect(Collector.of(null, null, null)); // TODO
assertEquals(
IntStream.range(0, 100)
.map(i -> 99 - i)
.mapToObj(String::valueOf)
.collect(Collectors.toList()),
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
new ArrayList<>(result));
}
/**
* Given an array of int, find the int value that occurs a majority
* of times in the array (that is, strictly more than half of the
* elements are that value), and return it in an OptionalInt. If there
* is no majority value, return an empty OptionalInt.
*/
OptionalInt majority(int[] array) {
return null; // TODO
}
@Test @Ignore
public void ex37_majority() {
int[] array1 = { 3, 3, 4, 2, 4, 4, 2, 4, 4 };
int[] array2 = { 3, 3, 4, 2, 4, 4, 2, 4 };
OptionalInt result1 = majority(array1);
OptionalInt result2 = majority(array2);
assertTrue(result1.isPresent() && result1.getAsInt() == 4);
assertFalse(result2.isPresent());
}
// ========================================================
// END OF EXERCISES -- CONGRATULATIONS!
// TEST INFRASTRUCTURE IS BELOW
// ========================================================
static final String REGEXP = "[- .:,]+"; // for splitting into words
private BufferedReader reader;
@Before
public void z_setUpBufferedReader() throws IOException {
reader = Files.newBufferedReader(
Paths.get("SonnetI.txt"), StandardCharsets.UTF_8);
}
@After
public void z_closeBufferedReader() throws IOException {
reader.close();
}
}